Tutorial

LNCS 4909

Advanced Lectures

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4909

Irene Eusgeld Felix C. Freiling
Ralf Reussner (Eds.)

Dependability
Metrics

Advanced Lectures

@ Springer

Volume Editors

Irene Eusgeld

ETH Ziirich, Institut fiir Energietechnik

ML J 14, Sonneggstr. 3, 8092 Ziirich, Switzerland
E-mail: eusgeld @mavt.ethz.ch

Felix C. Freiling

University of Mannheim, Laboratory for Dependable Distributed Systems
68159 Mannheim, Germany

E-mail: freiling @informatik.uni-mannheim.de

Ralf Reussner

Universitit Karlsruhe (TH), Faculty of Informatics
Am Fasanengarten 5, 76131, Karlsruhe, Germany
E-mail: reussner@ipd.uka.de

Library of Congress Control Number: 2008927605

CR Subject Classification (1998): D.2.8, D.2, D.4.8, D.4
LNCS Sublibrary: SL 2 — Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-68946-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-68946-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12279678 06/3180 543210

Preface

With the growing ubiquity of computing systems it is essential that we can place
reliance on the services they deliver. This is particularly obvious and important
in areas like aircraft avionics, global financial transaction processing, or nuclear
power plant control where human lives or large financial values are at stake.
But also the worldwide daily nuisances of computer viruses or data corruptions
caused by crashing operating systems collectively impose high costs on society,
which are beginning to become economically relevant.

Within computer science, the term dependability has been introduced as a
general term to cover all critical quality aspects of computing systems. Follow-
ing the terminology of Laprie [26, 293], a system is dependable if trust can
justifiably be placed in the service it delivers (we will define dependability and
related terms more precisely later in this book). In the early days of computer
science, researchers thought that program correctness was the key to depend-
ability meaning that a program always terminates and satisfies its postcondition
if it is started in a state where its precondition holds. Today we know that many
other factors influence the well-functioning of a computer system. Examples of
these factors are:

— Hardware reliability: The occurrence of hardware faults, which cannot be
neglected in critical systems.

— Non-functional properties: The growing importance of properties which can-
not be expressed so easily as pre- and postconditions. As an example, con-
sider the performance requirement that the average response time should be
below some value.

— Usability: The fact that a computer system is used by human operators who
can accidentaly misuse the system.

Consequently, the area of system dependability has established itself as a central
research area in computer science.

Justifying reliance in computer systems is based on some form of evidence
about such systems. This in turn implies the existence of scientific techniques
to derive such evidence from given systems or predict such evidence of systems.
In a general sense, these techniques imply a form of measurement. This book is
about measuring dependability. It is the foundation of the dependability metrics
project that aims at increasing the state of the art of dependable systems by
improving the way in which we measure them. The focus of this book is to give
an overview over the current state of the art in measuring the different aspects
of dependability. It thus complements other foundational work in subdisciplines
of dependability like work by Birolini [58] in the area of hardware reliability.

The main impulse for this project resulted from a research seminar which was
held October 30 — November 1, 2005, at Schloss Dagstuhl in Wadern, Germany.
The seminar is part of a series of such events which are sponsored by the German

VI Preface

Computer Science Society (Gesellschaft fiir Informatik). The aim of this series
is to bring together young researchers to work on interesting new foundational
aspects of computer science and lay the setting for further development.

We are grateful to the Gesellschaft fiir Informatik for supporting this event.
We also wish to thank the staff at Schloss Dagstuhl for giving us a wonderfully
productive time during the seminar. Thanks also go to the computer science de-
partments of RWTH Aachen University and University of Mannheim for hosting
the dmetrics CSCW server and mailing list. Finally, we wish to thank Springer
for offering to publish this volume as part of Lecture Notes in Computer Science
and Michael Kuperberg and Melanie Pietruska for their effort during the final
phase of publication.

August 2007 Irene Eusgeld
Felix C. Freiling
Ralf Reussner

Organization

The Dagstuhl seminar on Dependability Metrics is part of a series of seminars
organized with support by the German Computer Science Society (Gesellschaft
flr Informatik, GI). It was held during October 30 — November 1, 2005 at Schloss
Dagstuhl, Germany, as event number 05442.

Organizers
Irene Eusgeld

Felix Freiling
Ralf Reussner

Participants

Steffen Becker
Zinaida Benenson
Rainer Bohme
Kenneth Chan
Maximillian Dornseif
Irene Eusgeld
Bernhard Fechner
Viktoria Firus

Swiss Federal Institute of Technology (ETH),
Zurich, Switzerland

University of Mannheim, Germany

University of Karlsruhe (TH), Germany

Falk Fraikin Matthias Rohr
Jens Happe Antonino Sabetta
Thorsten Holz Felix Salfner
Heiko Koziolek Max Walter
Philipp Limbourg Ute Wappler
Martin Mink Steffen Weiss
Thomas Nowey Lijun Zhang

Iman Poernomo

Table of Contents

1 Introduction to Dependability Metrics
Irene Eusgeld and Felix C. Freiling
I Foundations

2 On Metrics and Measurementsouuttnt ..
Rainer Bohme and Felix C. Freiling

3 Validation of Predictions with Measurements
Rainer Bohme and Ralf Reussner

4 Counsistent Metric Usage: From Design to Deployment
Kenneth Chan and Iman Poernomo

5 Basic and Dependent Metrics,
Ralf Reussner and Viktoria Firus

6 Goal, Question, Metric i
Heiko Koziolek

7 Quality of Service Modeling Language
Ste en Becker

8 Markov Models
Michael Kuperberg

IT Reliability Metrics

9 Hardware Reliability
Irene Eusgeld, Bernhard Fechner, Felix Salfner, Max Walter,
Philipp Limbourg, and Lijun Zhang

10 Software Reliability
Irene Eusgeld, Falk Fraikin, Matthias Rohr, Felix Salfner, and
Ute Wappler

IIT Security Metrics

11 Introduction to Security Metrics oo,
Felix C. Freiling

X

12

13

14

15

16

v

17

18

19

20

21

22

23

24

25

Table of Contents

Cryptographic Attack Metrics 133
Zinaida Benenson, Ulrich Kiihn, and Stefan Lucks

Security Measurements and Metrics for Networks 157
Thorsten Holz

Industrial Approaches and Standards for Security Assessment 166
Ste en Weiss

Economic Security Metrics 176
Rainer Bohme and Thomas Nowey

Human Factors 188
Martin Mink and Thomas Nowey
Performance Metrics

Introduction to Performance Metrics 199
Heiko Koziolek

Performance-Related Metrics in the ISO 9126 Standard........... 204
Ste en Becker

Analytical Performance Metrics i ... 207
Jens Happe
Performance Metrics in Software Design Models 219

Antonino Sabetta and Heiko Koziolek

Measuring Performance Metrics: Techniques and Tools 226
Antonino Sabetta and Heiko Koziolek

Performance Metrics for Specific Domains 233
Heiko Koziolek and Jens Happe

Overlapping Metrics

Introduction to Overlapping Attributes......................... 243
Ralf Reussner and Viktoria Firus

Performabilityo 245
Irene Eusgeld, Jens Happe, Philipp Limbourg,
Matthias Rohr, and Felix Salfner

Reliability vs. Security: A Subjective Overview 255
Felix C. Freiling and Max Walter

Table of Contents XI

Appendix

26 Biographies of Contributors i 261
27 References 267
Subject Index 301

Author Index 305

1 Introduction to Dependability Metrics

Irene Eusgeld! and Felix C. Freiling?

! Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
2 University of Mannheim, Germany

The goal of this book is to give a wide overview about the metrics that exist for different
aspects of dependability, namely reliability, security, and performance. The following
chapter attempts to define the term dependability and give an overview of this book.

1.1 Definition of Dependability

There are multiple meanings and connotations implied by the term “to depend on some-
thing”. It is a mixture of trust and reliance that can be positive or negative. In society
there are many relations that imply some form of dependence. In this book we are
mainly concerned with the dependence on technical systems. This is motivated from the
fact that in our modern world we almost constantly depend on such systems — when
we work, when we travel, when we communicate. Since some time, these systems con-
sist to a large extent of digital electronics. Consequently, academia and industry have
for a long time been interested in improving the degree up to which we may depend
on such systems. Briefly spoken, if we may depend on a system, this system is called
dependable.

The term dependability has been assigned many different precise meanings in the
literature. A 1988 survey of several definitions of computer-based system dependability
1389] resulted in the following summary:

Dependability of a computer system may be defined as justifiable confi-
dence that it will perform specified actions or deliver specified results in a
trustworthy and timely manner.

The definition today has not substantially changed. Some details however are
noteworthy.

In 2004, AviZienis et al. [@] attempt to summarize and clarify the discussion of
terms. They identify two alternative definitions that stress different aspects of the term.
The first and “original” [IE, p. 13] definition stresses the need for justification of trust
in a system:

[...] dependability is the ability to deliver service that can justifiably be
trusted.

The second definition provides a criterion for deciding if the service is dependable:

[...] dependability of a system is the ability to avoid service failures that
are more frequent and more severe than is acceptable.

I. Eusgeld, F.C. Freiling, and R. Reussner (Eds.): Dependability Metrics, LNCS 4909, pp. 1—@2008.
(© Springer-Verlag Berlin Heidelberg 2008

2 I. Eusgeld and F.C. Freiling

The above definitions build upon continued discussions on terms and definitions,
which were documented 1992 in a book edited by Laprie]. That book contains a
34-page English text together with translations in German, French, Italian and Japanese
as well as a substantial glossary and cross-index. The main step forward made in the
article of Avizienis et al. is the integration of security as a natural part of dependability.
In Laprie’s book 12931, security was one of four main attributes of dependability but
was treated rather like an “add on” that was mentioned only briefly on half a page.
Security itself encompassed a notion of availability which was not contrasted to the
“first class” notion of availability. This has changed. In the 2004 paper, AviZzienis et al.
26] lift security to stand almost next to dependability (note that the title of the paper
now mentions the word ““security”” next to “dependability”).

1.2 Attributes of Dependability

Our book builds upon the work by AviZienis et al. [@] but considers a slightly broader
view on dependability. Dependability has many facets and there are many different at-
tributes of a system that make it dependable. In the literature, there are many opinions
about the number of attributes dependability reaching from a very narrow point of view
like “dependability is availability” 218] to a very broad view like “reliability, availabil-
ity, performance, integrity, robustness, serviceability, resilience, maintainability, testa-
bility, safety, security” [@]. Avizienis et al. [@] enumerate the following attributes of
dependability and security:

Auvailability: readiness for correct service.

Reliability: continuity of correct service.

Safety: absence of catastrophic consequences on the user(s) and the environment.
Integrity: absence of improper system alterations.

Maintainability: ability to undergo modifications and repair.

Confidentiality: absence of unauthorized disclosure of information.

Inclusion of performance into a general definition of dependability goes back to an ISO
standard [Ia] in which, according to Avizienis at al. [IE], can be traced back to a defini-
tion from the telephony area with its emphasis on availablity and service continuity.

1.3 Selected Attributes

In order to keep this book concise, we decided to focus on three very different but
equally important attributes of dependable systems:

— Reliability.
— Security.
— Performance.

The attributes and their respective research areas differ in many ways, especially since
they have roots in different research communities. For example, security and reliability
evolved from different historical motivations. On the one hand, reliability was mainly

Introduction to Dependability Metrics 3

concerned with quantifying the trust we can put in a system that can have random
hardware faults, as is natural given the non-negligible failure rates of old computing
equipment. On the other hand, security was concerned with keeping data secret in com-
puting systems, mostly by controlling access to such data. Later in the development
of dependable computing people noticed that it is difficult to distinguish random and
unintentional hardware faults from intentional and malicious faults and ignorance of
the latter is therefore difficult to justify. Similarly, the security community realized the
importance of integrity and availability, which have for a long time been studied by the
dependability community.

The attribute of performance has been neglected as an aspect of dependability for a
long time. It has several historical roots that lie in the fields of process optimization on
the one hand and software engineering on the other.

One important classical attribute of dependability, namely safety, is not subject of
this book. Readers interested in safety can find some helpful information in Part [] of
this book on reliability metrics, because many methods and models, such as e.g. Markov
chains, fault (hazard) tree analysis and others are similar for both fields.

1.4 Outlook on the Book

Dependability is the ability of a system to deliver service that can justifiably be trusted.
Justification of trust implies ways to measure attributes of dependability, i.e., a set of
dependability metrics which are the topic of this book. The focus is to survey the state
of the art of metrics for chosen attributes of dependability. The term metric is used in
a very broad sense ranging from coarse qualitative metrics to rigourous quantitative
metrics.

In this book we survey the state of the art for measuring three attributes of depend-
ability: reliability, security and performance. We cover every attribute in a separate
part of this book. Since it appears to be the oldest and most developed of the chosen
attributes, we start with discussing reliability metrics first followed by security and per-
formance metrics. The book opens with an additional part on foundations of depend-
ability metrics where we discuss general questions and methods used throughout the
book.

As an outlook, we briefly enumerate some of the discussed metrics to give the reader
a better feeling for the scope of the different parts of the book.

Reliability related metrics have been traditionally quantified. Metrics such as mean
time to failure, point availability, and failure rate are commonly accepted and widely
used. They are discussed in the Part[[Il on reliability metrics. Continuous integration of
hardware and the disappearance of the border between hard- and software have lead
to increased system complexity and difficulty in testing for initial system verification.
This corresponds to an increased effort in the area of software testing and is discussed
in the context of software reliability (see Chapter [I0).

Security metrics have evolved from early attempts to compare cryptographic proto-
cols (e.g., the length of cryptographic keys) to modern approaches that try to evaluate
and compare the security of entire organizations. The problem with security metrics is
the difficulty to make predictions. This has opened the path for very sceptical prophecies

4 I. Eusgeld and F.C. Freiling

for this area]. Indirect metrics based on market mechanisms are a possible ap-
proach towards prediction of security. They are surveyed and discussed together with
other security metrics in Part[ITIl

The aspects of performance measurement of computer-based systems are surveyed in
Part[[Vl This includes workload characterisation (number and type of service demands)
and characterisations of system configuration (number of operational processors, max-
imum number of threads, available memory, bandwidth of networks, etc.) and resulting
performance metrics like response time and throughput.

It is increasingly obvious that several dependability aspects interact in complex com-
puter systems that can hence not be considered independently. As an example con-
sider the problem of ensuring secure fault-tolerance, i.e., improved reliability (by fault-
tolerance) and a preserved security policy at the same time. It is well-known @,]
that fault-tolerance mechanisms can undermine the security of a system. The area of
combined dependability metrics is an area of active research and is surveyed for the
two aspects performance and reliability (“performability”’) and reliability and security
in Part [V] of this book. This final part shows that only a combined consideration of
important dependability attributes will lead to our design objective: a development of
systems, on which we can really trust.

Part 1

Foundations

2 On Metrics and Measurements

Rainer Bshme'! and Felix C. Freiling?

! Technische Universitit Dresden, Germany
2 University of Mannheim, Germany

The following chapter attempts to define the notions of metric and measurement which
underlie this book. It further elaborates on general properties of metrics and introduces
useful terms and concepts from measurement theory, without being overly formal.

2.1 On Measurement

In many cases, fo measure means to attach a number to an object, i.e., to represent
some aspect of the object in a quantitative way. For example, scientists can measure
the temperature and the humidity of a location at a certain time by coding observations
(temperature, humidity) related to the object (location) with numbers. More generally,
a measurement function assigns an element of a set to an object, where the specific
element is chosen depending on an observation. The set must not necessarily com-
prise numbers but can also consist of unordered symbols. For example, classifying the
weather today as “rainy”, “dry”, “foggy” etc. is also regarded as measurement. How-
ever, not every assignment of numbers to objects is considered as measurement. For ex-
ample, the matriculation number of a student is not a measurement because the number
is chosen regardless of the student’s attributes (here we ignore that higher matriculation
numbers may be an indicator of later admission).

In the setting of this book we usually want to measure attributes of systems or parts
thereof, such as methods or processes. As system can be complex, there are many dif-
ferent measurable attributes. Any form of measurement is an abstraction: it reduces the
complexity of one or several attributes of the original system to a single symbol. The
main purposes of this form of abstraction are to classify and compare systems.

It is important to stress the difference between an attribute and its measurement. For
example, the complexity of a software system is an attribute which can be measured in
many different ways. However, the difference between an attribute and its measurement
sometimes blurs because measurements are also taken to define the attributes.

Measurement is closely connected to the notion of a metric. In the course of this book
we will use the term metric for a precisely defined method which is used to associate
an element of an (ordered) set V' to a system 5. This definition is used in the area of
software quality. In other areas, the term metric only refers to the set V', which contains
indicator values that answer certain questions asked about a system. As we will see
later, our understanding neither corresponds to the strict mathematical definition of a
metric (where it is a generalisation of the notion of a distance).

In general, a metric can be formalised as a function M that takes a particular system
from the set of systems .S and maps it to an element of V:

M:S—V

I. Eusgeld, F.C. Freiling, and R. Reussner (Eds.): Dependability Metrics, LNCS 4909, pp. 7 2008.
(© Springer-Verlag Berlin Heidelberg 2008

8 R. Bohme and F.C. Freiling

For example, M may be the assignment of a distance between two measurement points
of a system. Then V is the set of real numbers, a totally ordered set. The set V' can also
be a discrete set like the set of natural numbers in the “lines of code” metric for software.
The set V' must also not necessarily be totally ordered; it can also be a partially ordered
set or an unordered set like in the classification example above where V' consists of the
elements {foggy, rainy, dry} etc.

Attributes can have certain properties which should be reflected in their metrics. For
example, the complexity of a software package can be categorised as “low” or “high”.
Some attributes are meaningful in the context of composed systems. For example, the
attribute “size of a program” can be measured in lines of code. Given two programs x
and y we can define their composition z as the concatenation of = and y. The metric
“lines of code” reflects additivity in the following sense: the sizes of program z and
program y together sum up to the size of their composition z. Similarly, some attributes
allow to state relations between systems. Taking the “size” metric lines of code again,
it is possible to say that some program is twice as large as another program.

Determining a suitable metric for an attribute of a system is not always easy. A good
metric should reflect the relevant properties of the attribute in a homomorphic way.
This means that certain statements which can be made for a certain attribute of systems
should be reflected in the measurements of that attribute. In particular, two properties
should hold:

— Any sensible relation between systems regarding a particular attribute should be
reflected by a corresponding relation between the measurements of this attribute.
For example, a system = which is more complex than a system y should be ordered
appropriately if some complexity metric ¢ is used, i.e., ¢(x) > ¢(y) should hold.

— Any meaningful operation on attributes of a system should have a corresponding
operation on the measurements of that attribute. Assume there exists an addition
operation (“plus”) for the “size” of programs. If the size of program x “plus” the
size of program y equals the size of program z, then this should be reflected in the
appropriate metric for size. For example, lines of code is an appropriate metric if
the “plus” operator refers to concatenation of source code.

Any relations or operations on measurements which do not have a corresponding rela-
tion or operation on attributes must not be used to process the measurements.

2.2 On Scales

The result of measurements is data, which is further processed or analysed to answer
questions of interest to the researcher or practitioner. A useful approach to classify
types of data is given in the notion of scales. The term scale refers to the range V' of
a metric, and the relation between elements within V. The most commonly used ty-
pology of scales goes back to Stevens [459], who defined a hierarchy of four different
types of scales based on the invariance of their meaning under different classes of trans-
formation. He further proposed to derive permissible procedures for data analysis and
statistical inference depending on the scale level.

On Metrics and Measurements 9

Nominal Scale

The simplest type of scale is the nominal scale (also known as categorial scale). With a
nominal scale, V' is an unordered discrete set. Classifications usually employ the nomi-
nal scale, for example when classifying computers according to their operation system
(V = {Windows, Unix, OS/2}). Measurements on a nominal scale can be compared
for identity or distinction and a number of measurements can be aggregated by count-
ing the frequencies in each class (or combination of classes if data from more than one
scale are analysed at a time).

Nominal scales can be transformed into other nominal scales by applying a bijective
mapping, i.e., a 1 : 1 correspondence between the elements of both scales V; and V5.
If more than one category in V; is mapped to a single element in V5 then the transfor-
mation loses information and thus is irreversible. It might still be useful to apply such
a transformation to aggregate data and increase the number of observations in each
(combined) category.

The special case where V' consists of two elements only is called dichotomic scale
(examples: “yes”/“no”, “07/‘1”, “male”’/*female”).

Ordinal Scale

The ordinal scale differs from the nominal scale in that V' is a discrete ordered set.
Examples for ordinal scales include severity measures for earthquakes or grades given
to students in examinations. In contrast to the nominal scale, two measurements on
the same ordinal scale can be compared with operators “less than” or “greater than”.
This allows the data analyst to create ranks and compute rank correlations. Ordinal
scales also allow for simple models of measurement error and they can be included as
dependent variables in regression models (ordinal logit or probit models).

Two ordinal scales can be transformed into each other by applying a bijective map-
ping f which preserves the ordering relation (monotonic mapping), i.e., if @ < b on one
scale then f(a) < f(b) on the other scale. As ordinal scales are one step higher in the
hierarchy than nominal scales, a downgrading (with information loss) to the nominal
level is always possible.

Interval Scale

The interval scale is an extension of the ordinal scale where the distance between ad-
jacent elements in V' is both meaningful and constant (equidistance). Interval scales
therefore support the difference operator, so that the difference between two points on
the same scale can be compared to the difference between two other points.

Interval scale A can be transformed into interval scale B by linear transformations
(adding/subtracing a constant, multiplying/dividing by a constant) since the relative
distance between any two scale points is not changed.

The standard example for an interval scale is the measurement of temperature. For
example, let scale A be the scale of measurement in degrees Fahrenheit and scale B be

10 R. Bohme and F.C. Freiling

the measurement in degrees Celsius. To transform a measurement in scale A into scale
B we can then use the formula:

5
f@) = o

Other applications for the interval scale include multi-point rating scales in question-
naires when the scale points are labeled with increasing numbers or are not annotated
at all. If more detailed annotations are given then the semantic difference between any
two scale points may vary and thus the resulting data should be treated as ordinal rather
than interval.

A number of measurements can be summarised with statistics of location (mean),
scale (variance) and higher moments. Moreover, interval scales allow for continuos
distribution error models, such as Gaussian measurement errors. This implies that the
entire class of parametric statistics can be applied to data on interval scales. Again,
interval scales can be converted to ordinal (and nominal) scales by cutting the scale at
some breakpoints and assigning the observations to the categories between.

x — 32)

Ratio Scale

The ratio scale is an extension of the interval scale where the origin (value of 0) is
defined in a natural way. Examples for ratio scales are length, mass, pressure, time du-
ration or monetary value. Additional possible operations for analysis are multiplication
of a measurement with a constant factors, taking logs and finding roots (among others).
Therefore statistical measures such as the geometric mean and the coefficient of varia-
tion are defined for ratio scales only. Transformations between different ratio scales can
be achieved by simply multiplying measurements with a scaling factor. For example,
converting a length metric in metres into a length in imperial feet is done by using a
scaling factor of 3.2808.
Interval and ratio scales are sometimes subsumed to cardinal scales.

Summary

Table[Ilshows an overview of the different scale types discussed so far. Nominal and or-
dinal scale are usually referred to as qualitative scales, whereas interval and ratio scale
are called quantitative scales. From a measurement point of view it is recommended
to collect data at the highest possible scale level. In particular metrics with at least a
quantitative scale are useful because they enable parametric statistics, which are more
powerful than non-parametric methods. The term parametric refers to a distribution as-
sumption where inference can be made on the parameters of the distribution rather than
on individual data points. For example, a comparison of means from two sequences of
measurements is a parametric method because the mean is a parameter of the distribu-
tion of the data.

As a final remark: although very popular, Steven’s typology of scale levels has been
criticised for not being comprehensive (it is easy to find pathological examples that do
not fit well in one of the four categories) and for imposing unnecessary restrictions to
data analysis by adhering to strict mathematical standards, which are difficult to meet

On Metrics and Measurements 11

Table 1. The hierarchy of scale levels

Scale level Examples Operators Possible analyses
Quantitative scales
Ratio size, time, cost x, /,log, Vv geometric mean, coefficient of vari-
ation
Interval temperature, marks, +,— mean, variance, correlation, lin-
judgement expressed ear regression, analysis of variance
on rating scales (ANOVA), ...
Qualitative scales
Ordinal complexity classes <,> median, rank correlation, ordinal
regression
Nominal feature availability =,# frequencies, mode, contingency ta-
bles

with real data [484]. Nevertheless, even the critics acknowledge that the typology pro-
vides simple guidance and protects naive data analysts from errors in applying statistics.
Therefore we deem it useful to keep in mind when designing and discussing depend-
ability metrics.

2.3 On Mathematical Metrics and Norms

In mathematics, a metric is a precisely defined term. It is the abstraction of a distance.
Formally, a metric d on a set X is a function which assings a “distance” value (a real
number) to pairs of elements from X:

d: X xX— R

The function d must satisfy several conditions to be a mathematical metric, i.e., for all
x,y,2z € X must hold:

every distance is non-negative, i.e., d(x,y) > 0,

the distance is zero for identical inputs, i.e., d(x, z) = 0,

the distance is symmetric, i.e., d(x, y) = d(y, z), and

the triangle inequality holds, i.e., d(z, 2) < d(z,y) + d(y, 2).

For example, consider the (two-dimensional) Euclidian distance where X is the set of
coordinates in a two-dimensional space, i.e., X = R x R. The Euclidian distance dg
calculates the distance of two points in X . Given two elements (z1,¥1) and (22, y2) of
X, dg is defined as

dp = /(2 = 21)% + (42 — 1)
It is easy to see that the conditions above hold for the Euclidian distance.
Somewhat closer to the notion of metric defined in section 2.1]is the mathematical
notion of a norm. In mathematics, a norm is an abstraction of a positive length or size.
A norm is a function p that maps an element of a set X to the real numbers:

p: X—R

12 R. Bohme and F.C. Freiling

The set X is usually a multi-dimensional vector space. To be called a norm, p must
satisfy the following conditions for all x,y € X:

the norm is always be positive, i.e., p(z) > 0,

the norm is scalable, i.e., p(axz) = |a|p(z) for some scalar a,

the triangle inequality holds, i.e., p(z +) < p(x) + p(y),

the norm is zero for the zero vector only, i.e., p(z) = 0 if and only if « is the zero
vector.

Standard examples are the (two-dimensional) Euclidian norm pr which assigns a
length to a (two-dimensional) vector. More precisely, X = R x R and for any (x,y) €
X pg is defined as follows:

pe = V|22 + |yl

Another notation for pg(x) is ||z||2.

Another well-known norm is is the Taxicab (or Manhatten) norm, which assigns to a
vector the “length” if you would take a taxi in a rectangular street grid from the origin
point to the point described by the vector. Here, X = N x N (where /N denotes the set
of natural numbers) and for any element (x,y) € X the Manhatten norm is defined as
T +y.

There is a close relationship between norms and metrics in the sense that every norm
implicitly defines a metric and special types of metrics implicitly define a norm. For
example, given a norm p on a set X, the construction d : X x X +— R with d(z,y) =
p(x — y) satisfies all the properties of a metric in the mathematical sense.

It is obvious that the mathematical definition of a metric requires the properties of a
ratio scale in Steven’s terminology. Since by far not every measurable aspect satisfies
these conditions, we will use the term metric in a less rigourous way throughout this
book.

2.4 Classification of Metrics

This volume presents a large number of metrics for measuring the dependability of
systems. Metrics can be classified by a number of aspects, most importantly by the way
they are constructed and the attributes of systems they represent. However, there are
also some possibilities to classify metrics according to their abstract properties, such
as:

— Scale level, and hence the granularity of V, as discussed in section[2.2]

— Construction: a metric can be derived in different ways, which results in the differ-
ence between analytical vs. empirical metrics. An analytical metric measures the
system by analysing its structure or its properties using models of the system. An
empirical metric measures by observing the real behavior of the system.

— Directness: it is possible to distinguish direct vs. indirect metrics. A direct met-
ric measures the system itself, whereas an indirect metric measures the effects of
the system onto another system. For example, the stock market price of the share
of company X is an indirect metric of the expected performance of company X.
Analytical metrics can also be regarded as indirect metrics.

On Metrics and Measurements 13

— Obtrusiveness: metrics that require a modification of the system for the purpose
of being measured are called obtrusive metrics, as opposed to unobtrusive ones,
which can be taken without touching (i.e. influencing) the system.

2.5 On the Quality of Metrics

It is easy to define metrics, but much harder to find meaningful ones. An important
quality of a metric is whether it reflects the attributes in question in a homomorphic
way (see section[2.1)). This can be regarded as a notion of validity of a metric. Closely
related is the question of the granularity of a metric, i.e., does it allow to distinguish all
systems that differ in their respective attributes?

There are also practical considerations when defining a metric: its availability and
its cost. Is it always possible to compute the metric for a given system? An empirical
performance metric of a production system is obviously much harder to collect than an
analytical one, because the production system will not always be available for bench-
marking or the costs to conduct the measurement are much higher.

Finally, a very desirable quality of a metric is its stability: different people measuring
the attribute in question should roughly get the same results. This property is sometimes
called scale reliability which should not be confused with the attribute of dependability
called reliability.

3 Validation of Predictions with Measurements

Rainer Bshme! and Ralf Reussner?

! Technische Universitit Dresden, Germany
2 University of Karlsruhe (TH), Germany

This chapter discusses ways to validate metrics and raises awareness for possible
caveats if metrics are used in a social environment.

3.1 What Does Validation Mean for Analytical Metrics?

The definition of an analytical metric is rather simple. For example, it is quite easy to
define
maintainability := lines of code/number of methods

Besides the facts that this metric “lines of code” needs further specification (e.g.,
whether comments or blank lines are counted) and that no unit is defined, the main
problem is whether this analytical metric really tells us useful information about the ac-
tual maintainability. To answer this question, a metric has to be validated. As analytical
metrics are used to make a prediction on a quality property of a system, validating an
analytical metric means comparing its predictions with independent measurements of
actual outcomes. This pretty much resembles the situation in physics, where a theory
(which corresponds to analytical metrics in our terminology) is used to make predic-
tions on the real world. The theory itself has to be validated with experiments. As a
very simple example, Newton’s theorems on mechanics allow to predict the speed of
objects in free fall (depending on time, v(¢) = ¢ - t). This simple analytical metric for
speed (or prediction model) can be validated by comparing the predicted values with
measurements on real objects. In our example, this comparison would reveal that the in-
fluence of aerodynamic resistance on falling objects is not negligible and that the simple
formula given above is only accurate for objects falling in vacuum.

As a consequence, analytical metrics always require validation with one or more
empirical metrics that measure the same concept as predicted by the analytical metric,
or a closely related phenomenon.

Against this backdrop, a common problem of metrics for many internal quality at-
tributes, such as extensibility, maintainability, and readability, becomes evident. While
many analytical metric are easy to define, it is sometimes hard and costly to validate
them with measurements. The designer of metrics often faces the following dilemma:
either s/he defines a directly measurable attribute as metric, which renders validation
trivial but might result in little expressiveness in the application of metrics. Alterna-
tively, a more meaningful and abstract definition may be preferred, which in turn makes
it more difficult to find good and observable indicators to compute and validate the met-
ric. Defining maintainability as the fraction of lines of code and number of methods
corresponds to the first option. However, maintainability could also be defined in many
different ways (e.g., as the amount of time spent to apply a specific change to the code).

I. Eusgeld, F.C. Freiling, and R. Reussner (Eds.): Dependability Metrics, LNCS 4909, pp. 14200&
(© Springer-Verlag Berlin Heidelberg 2008

Validation of Predictions with Measurements 15

But then it is hard both to demonstrate that the fraction of lines of code and number of
methods by measurements is a good indicator as well as to measure the time needed
for the specific change (because it depends on various other factors, such as experience,
technology, etc).

Note that the difficulty to validate metrics may vary between the different aspects of
dependability. For example, validation of performance metrics is relatively easy, as time
or throughput are already quantitative criteria that can be measured empirically, if the
way of measurement is defined in sufficient detail to rule out ambiguities. By contrast,
accurate measurement of reliability metrics is much harder in practice, mainly because
the object of study involves events that happen very rarely. Hence, a remarkably high
number of tests has to be conducted to allow statistical inference for high reliability
scores.

3.2 Different Types of Validation for Prediction Models

The validation of entire prediction models includes the validation of the underlying
analytical metrics, but requires further steps of validation on top of that.
We distinguish three levels of validation for prediction models.

Level I (metric validation): This level is concerned with the above described valida-
tion of the metrics, i.e., the comparison of predictions and measurements. Note that
this requires an implementation of the analytical metric to perform the predictions.
Since this is as obvious as the requirement that an analytical metric should be com-
putable, we do not introduce an extra “Level 0” for implementation validity.

Level II (applicability validation): This kind of validity is concerned with the appli-
cability of the prediction approach and the analytical metrics included. This means,
it is checked whether the input data can be acquired reliably and whether the results
of the metric can be interpreted meaningfully. If input data is obtained by humans
rather than by automated measurements, a level II validation can be conducted as
an experiment or a case study with human participants in the sense of empirical
software engineering (e.g., Tichy]). One of many examples for such studies
has been published recently by Koziolek and Firus @

Level III (benefit validation): If the analytical metric and the prediction approach is
part of a software or system development method (e.g., for the systematic selec-
tion of design alternatives), then the overall approach has to demonstrate its bene-
fits over other competing approaches, again by empirical validation. For example,
if an approach is motivated by lowering development costs and time, this can be
validated by a comparison between two development projects. However, such a
comparison requires high effort. Firstly, it is expensive to develop the same product
twice. As it is unlikely to convince a company to do so, this is mainly the domain of
non-profit research with dedicated funding. Secondly, differences in the course of
the projects may not only be caused by the different development methods taken,
but also by additional factors, such as human experience, etc. To control the in-
fluences of such third variables, experiments have to be repeated, which increases
costs even further.

16 R. Bohme and R. Reussner

3.3 Reactivity: Limits for Metrics and Quantification

To conclude the chapter on validation, we want to draw the reader’s attention to some
limitations of metrics when employed in a social environment. As this popular fallacy
is not of measurement-theoretical nature but occurs in real-world applications, we think
it is best suited in a validation context.

Reality Metric
projection
(=reduction of complexity)

reaction
(rational action with knowledge about the measurement process)

Fig. 1. Feedback mechanism when measurements have real consequences

The origin of the problem is a feedback mechanism between the result of a measure-
ment and the reaction of people who face consequences from the outcome of the mea-
surement. The purpose of metrics is to make justified statements about reality, which
is not measurable in its entirety. Therefore, since every metric has a much lower di-
mensionality than reality, it is a simplification or—in mathematical terms—a projec-
tion. People, however, who might be affected by the measurement outcome, may have
means to react by changing the measured objects in reality (see Fig.[I)). In many cases,
metrics are deliberately employed with the intention to stimulate this feedback, for ex-
ample when employers measure the performance of their employees and directly link
whatever metrics’ outcome to a compensation scheme.

Now consider the choice of strategic individuals who have knowledge about the mea-
surement process and in particular about those dimensions which are neglected by the
metric’s implicit projection. If they have an incentive to improve the outcome of a mea-
surement in a period between ¢y and ¢1, then it is rational to choose, among the alterna-
tive actions of constant costs, the one with maximum impact on the metric’s projection
plane. In other words, people adapt their behavior to the anticipated measurement pro-
cess if they see a chance in achieving a more favourable outcome for themselves. As
illustrated in Fig. 2] this kind of reaction is not necessarily in line with the assumed re-
lationship between those (unmeasurable) properties of reality that were intended to be
measured and the observable indicators employed to construct the metric[| Hence, the
interaction of strategic individuals subject to consequences of measurement outcomes
may thwart well-meant principles for designing good metrics.

! Note that the figure is fair in a sense that the action radius is modeled as a circle. In many cases
the situation might even turn worse, such as an ellipsoid with focal points orthogonal to the
assumed relationship.

Validation of Predictions with Measurements 17

assumed relationship

Reality 4 LoT T
(not measurable) K + action radius at
' fixed cost
t1 R
Metric

(measurable)

Fig. 2. Rational decision-makers foster favourable measurement result

As a consequence, since rational decision-makers are very inventive to achieve a
favourable measurement, metrics are prone to loose their power in providing objective
pictures of reality. If the adaptation proceeds gradually over time, for instance because
the exact circumstances of measurement and the implications of its outcome is not
communicated ex ante, then one can observe a “wear-out” of metrics.

There are numerous examples for wear-outs, such as unemployment figures or struc-
tural development indicators on the macro level (where governments act strategically),
or processor and graphic card benchmarks (where manufacturers tune their hardware
precisely on the benchmark operations), just to name a few.

Finally we will discuss some principles for possible counter-measures to mitigate
the adverse effects. The best solution would be to ensure that the aspect of reality to be
measured corresponds well to the actual indicators. When this alignment is difficult or
impossible, then the choice of indicators should reflect the cost of reactions orthogonal
to the projection. In other words, one can try to reshape the action radius in Fig.[2]to an
ellipsoid with focal points on the assumed relationship. This makes deviations, if not
preventable, at least costly. As a result, strategic individuals would rethink their optimal
reaction and a wear-out of metrics becomes less likely. Note that this countermeasure
corresponds to the economic principle of “incentive compatibility”. Using more than
one metric as decision criteria is another option to make it difficult for strategic indi-
viduals to adapt their reaction to all metrics at the same time (which is obviously most
effective for orthogonal metrics). This approach is equivalent with limiting the infor-
mation loss at the projection step.

All these countermeasures can be combined in an endeavor to reduce the danger of
strategic reactions and wear-out, but they are unlikely to solve the problem ultimately.
Therefore a general awareness of the problem is probably the most useful recommen-
dation, both for design and application of metrics. When designing a metric, possible
contexts for its application are largely obscure. Hence, good proposals for new metrics
should state the original objective of measurementE discuss possible limitation due to

% See also the discussion of goal-oriented measurement below in Chap.

18 R. Bohme and R. Reussner

adaption, and use telling names and a clear terminology to prevent over-interpreation in
different areas of application. When implementing a metric, however, one should clearly
evaluate the incentives to adapt and continue interpreting carefully the outcomes, espe-
cially if a metric has already been used “successfully” for a long time. In brief, when
defining metrics with real-world impact, do not blindly trust the virtues of quantifica-
tion and, after all, do not underestimate people’s inventiveness in adapting to the metrics
in use.

4 Consistent Metric Usage: From Design to
Deployment

Kenneth Chan and Iman Poernomo

King’s College London, U.K.

This chapter provides an overview of how the semantics of software metrics should
be consistently treated across design, implementation, deployment and management
phases of the software development lifecycle.

4.1 Introduction

The use of software metrics has become increasingly common in software design. Re-
cent research has focused on ways of improving systems through prediction and anal-
ysis of metric values. For instance, the designer can now employ a range of scalable
approaches to performance analysis over models of system behaviour. However, met-
rics are ultimately about an implemented and deployed system and, consequently, must
have an evaluative semantics that cannot be purely abstract and based in design.

This chapter provides an overview of how the semantics of software metrics should be
consistently treated across design, implementation, deployment and management phases
of the software development lifecycle. Consistent treatment is difficult to achieve, and
leads us to consider two issues.

The first issue concerns the necessity of an empirical component to metric seman-
tics. While metric based predictions are often made at the design stage, it is only through
instrumentation and monitoring of actual implemented systems that we can know the
effectiveness of the predictions. Metrics must be defined in such a way to permit empir-
ical validation. There is no point in specifying and predicting required response times
for software at design time unless response time can actually be validated over imple-
mentations. Furthermore, while validation of prediction is particularly important during
system testing, it is increasingly important to continue to apply validation after system
deployment, as part of continual management. This can be seen in the growth of QoS
policy-driven management systems, in which Service Level Agreements (SLAs), often
involving QoS metric-based requirements, are monitored and maintained.

Therefore, the validation of a metric must be possible in principle, as described in
Sect.[3.1] In addition, methods of validation must be practical and sufficiently efficient
to enable effective application at testing and/or management phases: the management
and administration of a SLA involving response time constraints will not be impeded if
the algorithm for computing response time is inefficient.

The second issue concerns maintaining the consistency of metric semantics between
phases of the software lifecycle. From design to maintenance, the same metric will
be used in different ways within a range of different languages. For example, a metric
constraint might be written in QML at a design, but monitored using Windows Manage-
ment Instrumentation at implementation, and managed via some vendor-specific SLA

I. Eusgeld, F.C. Freiling, and R. Reussner (Eds.): Dependability Metrics, LNCS 4909, pp. 19200&
(© Springer-Verlag Berlin Heidelberg 2008

20 K. Chan and 1. Poernomo

1 Requirements and Design
4 Management
(11 Metric requirements analysis)
(41 Monitoring)
C 1 2 Constraint Formalization)
41 Diagnostics
(13 Models with metrics)
412 Runtime analysis
2 Implementation
(2 1 Satisfaction design constraints)
42 Dynamic adaptation
(22 Instrumentation for testing and management) (internal/external)
3 Testing
(31 Metric value Observations) 422 Adaptation Mechanisms
(32 Metric value Testing)
(33 Metric Analysis)

Fig. 1. Treatment of metrics within the software development lifecycle

language. Even with a medium sized system, the consistent treatment of metrics through
each of these languages becomes a problem.

It is desirable to achieve greater levels of automation and increased trustworthiness
that goes beyond current industry practices with respect to consistency and validation.
This chapter deals with how current research is progressing toward these objectives. Our
literature review draws upon several topics of research: in particular, runtime service
management and model driven architecture.

This chapter provides an overview of the state of the art in empirical validation of
metric-based requirements. We proceed as follows:

— We discuss how metrics are employed across the development lifecycle and identify
the problem of consistency and validation in Section 2

— Sectiond.3] discusses some relevant notions from the theory of science.

— Section 4] provides a review of related work in empirical validation of metric-
based prediction.

— We summarize how current research addresses the problem of consistency in sec-
tion 43

— Concluding remarks are given in section 4.6l

4.2 From Design to Deployment

It is increasingly understood that much benefit can be gained from a model-based pre-
diction and assessment of metric constraint conformance prior to implementation. Much
recent research has advocated a range of compositional behavioural models that facil-
itate the estimation of performance and reliability characteristics. There exist a range
of performance-oriented software development processes that are suitable for industrial
contexts: for example, in the SPE method [451]], quality of service constraints are inte-
grated within a system design and evaluated over a model of system execution, with the
goal of improving the performance of the final implementation.

Consistent Metric Usage: From Design to Deployment 21

The increasing recognition on the importance of software quality of service
has resulted in various techniques for integrating QoS within the phases of software
development.

The Software Development Lifecycle

Fig. [l illustrates how current research treats metrics within the software development
lifecycle.

Design. At design and analysis of a system, metrics are typically involve the following
issues:

1.1. Metric based constraints are specified alongside the system initial design.

1.2. Metric-based constraints are usually specified in some informal way that is easy to
understand by people without the technical knowledge. To impose these informal
constraints over the actual system design may prove difficult without first formal-
ising them, as there will be no guarantee that informal elements will have a well
understood semantics when employed at later stages of development.

1.3. Anincreasingly important part of system design is the modelling of the system un-
der development. Most developers now employ UML as the toolset for modelling
component based systems, but the metamodel of UML and most other modelling
tools do not have dependability parameters built in. Implementation of a range of
dependability attributes have been proposed in, for example, the UML Profile for
QoS, but it remains a question as to how these attributes may be correctly attached
to a system design model.

Implementation. Once the system design is ready for implementation, the develop-
ers will entirely be responsible for ensuring that the desired dependability attributes
will materialise, as well as making sure there will be some means of proving to the
client that they are getting what they asked for. This prompt for extra measures dur-
ing implementation alongside the functional aspects of the system. Components during
runtime will appear largely as black boxes to the runtime environment, exposing only
services that it is designated to provide. This makes it difficult to evaluate metric val-
ues readily. For example, many dependability attributes of a component often require
some means of probing the insides of a component. Components therefore need to be
carefully developed in such that it may explicitly provide the extra information required
to determine their associated metric constraints. Components which are explicitly im-
plemented to cater for QoS properties alongside their functional properties are called
metric measurable components.

Testing. Testing is the primary means to prove satisfaction of metric-based constraints.

3.1. For implementation of a metric-measurable system, it is possible to make direct
observations over many of important attributes. If the semantics of the metrics and
mechanisms are preserved throughout the previous phases, the values obtained by
observation can be checked against those required in the corresponding design
specification. This is provided that the evaluative mechanisms used in testing are
consistent with the metric semantics employed at design.

22 K. Chan and 1. Poernomo

3.2. Not all metric values can be observed directly, some may require prolonged ob-
servation. A good example will be the reliability of a component, which requires
continuous monitoring over a period of time. This requires extra infrastructure, ei-
ther a standard or a custom one, to run alongside the software-under-test in order
to draw concluding results from such observations.

3.3. The analysis of the system can indeed happen throughout the pre- deployment
stage of a software development. Much of this volume will be dedicated to various
dependability analysis methodologies at the design level. In fact, when depend-
ability properties are taken into account within a development it is often a good
practice to conduct analysis at various stages and levels in the process.

Deployment and Management. While metric values are checked for conformance to
constraints, medium and large scale software often demands further, ongoing monitor-
ing even after deployment of the software, as part of general system management.

4.1 Apart from static analysis of QoS attributes based on assumptions over various
factors, with the information obtained by monitoring it is possible to do dynamic
analysis during runtime of a system, as well as making dynamic predictions on
the QoS aspects of the system. Runtime analysis and predictions distinguish them-
selves from the various methodologies in the pre-deployment phase as they rely on
a live feed of information, provided by a monitoring infrastructure such that the
input data inherit guaranteed credibility.

4.2 QoS policies are used for supporting activities such as QoS negotiation and runtime
adaptations, dictating the type and magnitude of adaptations that may occur. The
metrics used in these policies should be similar to those used in the design phase
as these policies usually form part of the system’s design.

4.3 Adaptation can be made during runtime to ensure robustness of a system in ex-
ecution by means of runtime reconfiguration strategies that operate when QoS
constraints are violated. A QoS-aware component may have adaptation mecha-
nisms built in: such mechanisms are called the internal adaptations. Mechanisms
that invoke adaptations outside the software itself are called external adaptations.
Depending on the QoS policy, adaptations may be reactive if they are passively in-
voked on violation of constraints contained in the policy, or they may be proactive
if the system actively predicts the occurrences of a violation and invoke adaptations
preventing it from happening at all.

When defining a metric for any particular dependability property, it should prefer-
ably be able to support all the activities stated, making it possible that its semantic
consistency to be carried all the way through from design to the actual lifetime of the
software. Otherwise if the consistency breaks down somewhere down the process, it
will be notoriously difficult to repair, causing more problems than the benefits obtained
from defining the metrics.

Consistency and Validation

System metrics are concerned with some aspect of an implemented system. Even
though metrics should be employed within the design phase to build models, a met-
ric’s evaluative semantics cannot be purely abstract and must be given with respect to

Consistent Metric Usage: From Design to Deployment 23

implementation. This is in contrast to mathematical metrics, whose semantics is given
over an abstract, platonic domain, without reference to physical reality: throughput ul-
timately concerns the amount of work performed by an actual system over a period of
time, while the Minkowski metric defines a model of distance over hyperbolic space

This empirical aspect leads to difficulties in the usage of metrics across the develop-
ment lifecycle. The moment one begins to make employ metrics to make statements at
the design stage, one runs into consistency and validation problems.

— Consistency. Consider a metric for module coupling. We can define a method for
measuring the degree of coupling between components in a UML?2 superstructure
components-and-connectors diagram. This will provide a prediction of the degree
of coupling in the final implementation. Assume our implementation is then in a
combination of SML and C# code running in the .NET environment. Because we
have defined the coupling metric over two different languages — the UML?2 meta-
model and the .NET languages — how do we know that coupling as we have defined
it for the UML2 model is an accurate representation of the notion of coupling in our
implementation? How do we know that the definitions are semantically equivalent?

— Validation. Even if the semantics of metrics across design and implementation is
consistent, a related problem concerns the accuracy of predictions made at the de-
sign stage. Consider a M/1/1 queuing model of a system that is used to estimate
response time. How do we guarantee that this estimation is accurate? Do we pro-
vide some formal guarantee that the system completely implements the model, and
that any prediction over the model is therefore accurate for the model? While de-
sirable, this is expensive and potentially infeasible if the model involves a prob-
abilistic behavioural aspect (as would be the case for reliability and performance
models). Alternatively, do we manually instrument the system and independently
calculate response time of the actual system? This will do the job, but detailed man-
ual instrumentation can also be expensive for complex systems. It can also be done
incorrectly (the wrong things might be instrumented for a given metric).

Empirical and Analytical Metrics

Not all metrics lead to a consistency and validation problem. Let us consider the prob-
lem following the definitions of Section 2.4

Recall that empirical metrics can only make an empirically measurable observation
over some aspect of the system and offer no recourse to model-based prediction. In
software engineering, the most obvious empirical metrics are syntactic measures over
an implementation: for example, a code documentation measure. There are also metrics
that specifically concern the design — such as conformance to a standard, or the degree of
completeness of specification. These metrics also do not result in a validation problem,
obviously, as they are never predicted and are useful only when we can immediately
measure them.

In contrast, the semantics of an analytical metric involves a function over some
property of a system that has an abstract representation in a design-stage model. For

! Although, of course, hyperbolic space can also be used to provide a useful model of physical
reality.

24 K. Chan and 1. Poernomo

Prediction over model | System model
>

—
@ 4

Verification of prediction

Analytical
metrics
(eg computational accuracy
fault density throughput
reliability)

A\

Empirical
metrics
(eg lines of code compliance
to standards)

o Pl %

4) (L User
environment

Fig.2. Usage relationships between empirical and analytical metrics from design to imple-
mentation

example, response time of a method for a class is an analytical metric because we can
define a timed, state-based model of class object execution that will represent the time
it takes for methods to finish a computation. In this way, analytical metrics can be pre-
dicted prior to measurement: they are predicted with respect to a model we build of the
system. Analytical metrics are the larger subset of metrics. Even many syntactic mea-
sures are analytical. For example, depth of inheritance could be predicted over a UML
class hierarchy diagram — but this will still be a prediction of inheritance with respect to
an implementation of the diagram — perhaps the final implementation may not strictly
preserve the inheritance relations of the original design, either by intention or mistake.

Fig. Rl represents the relationships between empirical and analytical metrics and sys-
tem models and implementations.

What is the best way to treat consistency and validation?

World s best
model checker

Check model satisfies
its requirements

UML + metric
based constraints

World s best

theorem
prover
Development
How 1o do we know that the constraints
v are REALLY ‘Ydfl.‘ffl‘ed?
Implementation

Fig. 3. The abstraction gap between prediction of system properties and an empirical guarantee
that properties are satisfied

Consistent Metric Usage: From Design to Deployment 25

Consistency is, in practice, handled by careful manual development from model to
implementation. Metric-based requirements of a system are tested during the testing and
maintenance phases of the software lifecycle model. Some inconsistencies may still re-
main, and further time-intensive effort is often demanded of developers and testers to
check for and eliminate consistency discrepencies between specification and implemen-
tation. While feasible for smaller systems, manually developed test cases are inadequate
for large scale enterprise systems, due to regular modifications and extensions, a re-
configurable deployment environment and regular subsystem overhauls. Small changes
in both hardware and software contexts of a deployed systems violates testing results
which are usually obtained under the assumption of a constant executional environment.

If the metric-based requirements are predictions, then the testing and maintenance
phases serve to validate them. The validation of a metric presupposes that the metric is
testable. This is an obvious statement, but opens metric-based prediction up to the same
problems that scientific theories face with respect to empirical validation. We can draw
some insight on testing from the philosophy of science, with its concerns regarding the
nature of what makes a good scientific theory and how empirical validation figures in
science. Karl Popper’s notion of falsifiability is particularly useful.

4.3 The Falsifiability Criterion

A state of the art metric-oriented model will involve a structural and behavioural sys-
tem specification together with a set of metric constraints. An example would be a UML
model with quality of service annotations provided in QML. Using the techniques sur-
veyed in other chapters of this book, it is possible to apply a range of analysis techniques
that will provide predictions about what the values of metrics will be for a system that
implements the model.

Design-stage analysis is very valuable. However, there remains the problem of ad-
dressing the abstraction gap between predictions over a model and ensuring that pre-
dictions are actually met in the implementation. Fig. []illustrates this.

We obtain metric values with respect to an implemented system. It follows that the
semantics of a software metric must, in some way, prescribe how this evaluation can be
achieved.

Falsifiability

In the book Logic of Scientific Discovery 13991, the philosopher Karl Popper attempted
to identify what distinguishes a scientific theory.

Prior to Popper, philosophers supposed that a scientific theory is a view of the world
developed through repeated empirical observation and inductive logic. For example, the
speed of light has been measured by attaching a mirror to a rock on the moon. A laser
on the earth is fired at the mirror, which then reflects the laser back to earth. This way
the time of the laser pulse can be measured and the speed of light can be calculated.

% Kurt Wallnau identified this as a central problem at the Second Workshop on Predictable As-
sembly held in Manchester, March 2006.

26 K. Chan and 1. Poernomo

According to traditional philosophy of science, we have a scientific theory that the
speed of light is constant because we repeat the experiment many times and always get
the same result. By induction, we infer that the speed of light is constant.

Popper was not satisfied with this explanation of a scientific theory, as it admits the-
ories he believed to be unscientific. For example, the theory of Marxism has thousands
of empirical examples to show that capitalist societies inevitably lead to the rebellion
of the working class. Similarly, a Freudian might claim that certain psychological prob-
lems stem from the Oedipus complex and have many case studies to prove this.

In the place of empiricism and induction, Popper proposed the concept of falsifiabil-
ity as the distinguishing feature of a scientific theory:

scientific theory = set of claims + method of falsifiability

Falsifiability is essentially a property of a theory that enables us to prove it to be false.
If a theory can be empirically shown to be false, then it is falsifiable. For example, our
theory of the speed of light is falsifiable, as the experiment permits the possibility of
a counter-instance that will show the theory to be false. We accept the theory as true,
not because of a large number of positive outcomes of the experiment, but because the
theory has yet to be falsified.

In contrast, a range of undesirable theories are no longer scientific under this cri-
terion. For example, the Marxist idea that capitalist societies inevitably lead to the
rebellion of the working class can never be falsified — a counter-example of a partic-
ularly successful capitalist society does not entail the overall idea is false. Similarly, a
Freudian might claim that all psychological problems stem from the Oedipus complex
and have many case studies to prove this — but there is no potential way of falsifying
the theory.

An Epistemological View of Metrics

We explicitly define our understanding of how an analytical metric’s semantics informs
its empirical validation.
A metric definition, to used across the development lifecycle, requires three things

— Some system property that can be measured

— A semantics for the property — that explains when a metric measurement is good or
bad for a particular system

— A means of predicting or measuring the metric.

Predictions of metric values over a model essentially form a small scientific theory.
They are abstract (model-based) predictions about reality (the actual system implemen-
tation). Following Popper, the definition of any analytical metric must also include falsi-
fication criteria: that is, it must indicate how to show that a predicted metric value is not
accurate for an actual implementation. Even if we do not accept Popper’s doctrine for
the theory of science, we can still adapt his arguments to our context. Without a means
of falsification, metric value predictions are as trustworthy as an astrological prediction:
perhaps a prediction might be true, but we have no way of showing it to be false.

Consistent Metric Usage: From Design to Deployment 27

Our discussion might be summarized with the following slogan:

metric = measurable system property + semantics + method of falsification

What Is a Good Metric?

Another interesting aspect of Popper’s philosophy that has some baring on our discus-
sion is that of epistemological understanding of simplicity 13991[136-145]. Here he
argues that the simplest, most elegant theories are the ones that are most readily fal-
sifiable. For example, a scientific law written as a first order function is more easily
falsifiable than one written as a second order function (although the latter is still falsifi-
able), and so on. In this sense he associates degree of strictness of a theory — the degree
in which a theory imposes the rigour of law upon nature — with its degree of falsifiabil-
ity. “Simple statements, if knowledge is our object, are to be prized more highly than
less simple ones because they tell us more; because their empirical content is greater;
and because they are better testable.”

This observation is salient to the considerations of this book and leads us to impose
a hierarchy of usefulness for metrics. Predictable metrics that lead to statements with
a high degree of falsifiability should be prized more highly than those that do not lead
to such statements. What is a good metric? It is, ideally, simple in Popper’s sense. The
slogan here is

good metric = simple metric

Predictable Assembly

By defining a metric’s semantics to include some means of falsification, we are, at least
implicitly, prescribing how empirical validation should be done. Using the Software En-
gineering Institute’s (SEI’s) terminology 14971, falsifyable metrics permit predictable
assembly.

Predicable assembly is a process of designing and predicting system behaviour and
then certifying that the implemented system does, in fact, live up to the predictions.
The commitment to empirical measurement need not be absolute instrumentation of the
metric itself. It could take the form of a validation that the system abstraction accurately
reflects the nature of the system it is abstracting. An example validation would be that
the probabilistic transitions in a Markov chain model do in fact represent the usage
profile of the modelled system. In this case we would need a guarantee (by means of
some theory or empirical study for instance) that the Markov chain model is an accurate
reflection of the system.

Wallnau’s SEI report [497] outlines the SEI’s Predictable Assembly from Certifiable
Components (PACC) initiative. The aim of PACC is to develop compositional engi-
neering methods and tools necessary to reliably predict the behaviour of assemblies of
components so that they can be certified with trust. The main relevant notion to our
discussion is the Prediction-enabled Component Technology (PECT) framework. This
is conscious design of component technology incorporating automated and trustworthy
analysis and prediction of system behaviour.

28 K. Chan and 1. Poernomo

Models are viewed as constraints imposed over the implementation of software com-
ponents. These constraints are divided into two categories: constructive and analytical
constraints. The satisfaction of constructive constraints implies that a component is suc-
cessfully implemented as specified by the model. Analytical constraints are aspects
correlating to architecture styles and patterns, or assertions made during the construc-
tion of the component model.

The important principle here is that components should only be trusted if it is possi-
ble to predict their satisfaction of both types of constraints. The PECT realise this con-
cept by means of two key ingredients: a construction framework and a set of one or more
reasoning frameworks. The construction framework supports all component construc-
tion activities for the particular component technology, while each reasoning framework
supports the property prediction activities of component based software based on a cer-
tain computational theory. Each of these reasoning frameworks is linked up with the
construction framework by means of some formally defined interpretations, bridging
the semantic gap between the construction domain and the analysis domain.

4.4 Validation

As noted in Section 2, validation of metric-based predictions occurs both at the testing
and deployment and management phases of the development lifecycle.

Direct and Indirect Validation

The manner in which metric value validation is performed depends in part on the sim-
plicity of the metric and the aspect of the system architecture being measured.
Complex predictions may be difficult or costly to validate through direct instrumen-
tation. For example, it might not be feasible to assess the fault-tolerance of every com-
ponent in a widely distributed, web-service based implementation, where many third
party components might be unavailable for instrumentation. If a number of complex
properties can be predicted based on a more simple, more readily testable or instru-
mentable properties, then it should be possible to exploit predictions during the testing
phases to make indirect validation of complex properties. This can occur only if the
prediction is based on a model that is consistently preserved by the implementation.
For the purposes of our discussion, we can classify metric validation into two kinds:

— Strong guarantee. This involves empirical measurement for a metric that has simple
falsification criteria. Immediate metrics are suited to this: for example, lines of
code or class cohesion. Predictable metrics associated with coarse grain system
components also often provide strong guarantees: for example, the response time
of a web server.

— Weak guarantee. This is more common for analytical metrics that are associated
with an architecture of finer grained components. We determine a metric’s value
only through measuring other properties that it depends on, and often need to uti-
lize aspects of the prediction model in order to calculate the metric itself. This
usage of the model blurs the boundary between prediction and validation. valida-
tion is “weaker” in the sense that there is still a predictive aspect and assumption

Consistent Metric Usage: From Design to Deployment 29

of model correctness. For example, we can calculate the stability of a system queue
by measuring the rate of request arrivals and the average service time. However,
this calculation uses a prediction model of how the queue works (that will include,
amongst other things, the service discipline) that is presupposed to hold over the
implementation. The model is used for both design and runtime prediction.

The best metrics are simple and yield strong guarantees. However, in practice, many
interesting metrics are not subject to immediate measurement and so weak guarantees
are the best we can hope for.

Testing

Testing is a means of identifying and rectifying constraint violations prior to deploy-
ment. Several researchers on validation of metric constraints have focused on the testing
phase. We now highlight some key research.

The PerfTTCN language] is a means of describing test relating performance
properties of a software implementation. It has been suggested that using a standard-
ised test language has the benefits of making described tests more understandable, un-
ambiguous and reusable, as well as making test results comparable. Medium scale case
studies on the use of Perf TTCN have shown its usefulness in a range of contexts.

Bryant’s group at the University of Alabama have developed a formal method, de-
signed to operate within their UniFrame framework, for specifying QoS metric con-
straints and constraint conformance testing].

The method’s procedure begins with a requirements analysis phase, involving the
creation of a catalogue for the required QoS constraints, consisting of a range of ac-
ceptable parameters. A formal specification of the QoS constraints is then defined,
using Two-Level Grammars (TLG) are used. (Since TLG can be transformed into OCL-
augmented UML models as well as executable codes, the method is potentially consis-
tent with OMG’s Model Driven Architecture (MDA) concept.)

The framework then exploits the TLG formalism to provide generate detailed con-
tracts to guarantee the required constraints both at component levels and at the overall
architectural level. The usefulness of the TLG formalism is that its specifications can
be transformed into OCL-augmented UML models and executable code, both of which
preserve the semantics of the TLG specification in a clear way. Importantly, instru-
menting code can also be synthesized from the TLG QoS constraints, used for static
and dynamic contract-based checks. The contracts are employed during testing to make
sure the constructed system meets the QoS requirements With this method, every QoS
parameter need to be formally specified using TLG.

Post-deployment Validation

Various metric values of deterministic software, in particular QoS metrics, are analyz-
able from a static point of view during a pre-deployment testing phase. However, there
also exist systems which operate in highly variable environments and therefore have
metric values that cannot be known a priori. In these dynamic systems it may not be
possible to pre-determine the QoS metric values the system may exhibit.

30 K. Chan and 1. Poernomo

In the service-oriented context, metrics are the primary entities involved in the spec-
ification of Service Level Agreements (SLAs). A SLA is a formal written agreement
between two parties: the service provider and the service recipient. In the terms of a
software development, it usually consists of a set of clauses describing a service to be
provided by the software product and any extrinsic properties that the service is ex-
pected to meet. These properties are usually constraints over Quality of Service (QoS)
metrics, with the focus on dependability characteristics such as performance, reliability
and security.

Clauses contained in a SLA are considered as constraints imposed over the imple-
mentation of the delivered software product, such that the development team will have
to provide proof of satisfaction for all of the clauses specified. In that sense, SLA clauses
should only specify observable software properties that they will be possible to be val-
idated over an implementation. Such characteristics should inherit the following ele-
ments:

— A metric: the unit of for a scalable range of values representing all possible in-
stances for the particular type of QoS attribute.

— A target: the desired value, specified in terms of the metric, that the SLA requires
from an implementation.

— A benchmark: the mechanism for producing the metric values reflecting the partic-
ular QoS attribute exhibited by an implementation.

An agreement must be reached between the two parties over the benchmarks, targets
and metrics used in a SLA, which will form part of the design specification of a system.
The development team will then be responsible for maintaining the consistency of the
metrics used throughout the development to ensure that the resulting software properties
legitimately satisfy those targets stated in a SLA. This implies that the semantics of the
metrics and mechanisms have to be carried through from the development cycle all the
way down to testing and deployment.

The bulk of research in empirical validation of metric constraints deals with the
specification and enforcement SLAs within complex enterprise systems.

SLA management systems generally work through some kind of monitoring infras-
tructure, to instrument and observe relevant system’s behaviour and generate the data
needed for interpreting the system’s current conditions at a higher level. By relating
them to the system’s architecture it is then possible to deduce whether the system’s
behaviour is without acceptable bounds.

Runtime validation and monitoring work in Chen and Rosu [@] focused on specifi-
cation based monitoring and on predictive analysis of systems, specific to Java. Based
on annotations, Monitoring Oriented Programming (MoP) tried to combine together the
system specification and the implementation by extending programming languages with
specifications taken from, for instance, extended regular expressions and Linear Tem-
poral Logic. That work couples the code with nonfunctional constraints so changing
required constraints entails opening code.

David Garlan et al] propose a generic 3-layer view for such a monitoring and
adaptation framework, consisting of performance monitoring, architecture modelling,
detection of constraint violations and automated architectural repair and Task manage-
ment layers. Garlan’s group has done extensive work on the architecture layer and its

Consistent Metric Usage: From Design to Deployment 31

mapping to the monitoring level. An important idea is the concept of Probes and Gauges
for bridging the abstraction gap between monitoring and architectural level.

In essence Probes are software implementation elements that are embedded into the
system-under-observation, exporting information that reflects the runtime behaviour of
the system. The Gauges are then responsible for semantically mapping this information
to the corresponding elements in the system’s architecture. This allows checking for
violation against constraints specified at the architecture level, and provides the data
required for runtime adaptation mechanisms.

Garlan also describes how a definition of Gauges can be attached to ACME based
architectural description. Infrastructure implementations of such Gauges have also been
included for illustration purposes.

Wang’s group at Boeing] have attempted to capture all aspects of a runtime
management system for Quality of Service (QoS). While it contains a range of related
services, the core services of such a system are: monitoring, diagnostic and adaptation.

The notion of monitoring depicts the explicit observation of runtime behaviour of
software systems. Two types of monitoring approaches have been distinguished - active
reporting and passive polling. In the former approach the monitored software actively
produce information which it then reports to the monitoring interface. In the latter the
application provides an interface for the monitoring system to poll for information.

QoS Diagnostics service analyses the information obtained by the monitoring ser-
vice, and using the policies store in its repository, it deduces where any action needs to
be taken to remedy any QoS related problems. When appropriate, it decides the kind of
adaptations the software system may need and passes on the request to an adaptation
manager, which would in turn carry out appropriate operations to provide a compromis-
ing solution to the arisen QoS problem.

The significance of such a system is that we can introduce policies which can dictate
the overall behaviour of a software system with regards to QoS. With the current infor-
mation obtained by a monitoring service we can more accurately determine the state of
the system, allowing us to pre-emptively tackle QoS related issues.

Dinda defines an interesting framework for not simply monitoring QoS properties,
but predicting their future values. In Dinda (121, ARIMA forecasting techniques are
employed host load prediction of CORBA based systems and the performance predic-
tion methods of Balsamo et al. [@] and Fortier and E.Michel]. This is a promising
approach that should be applicable to a wider range of metric values.

Huh et al.] suggest using runtime prediction and adaptation for the handling
of resource related problem of dynamic systems. It presents a resource management
approach for dynamic allocation to handle execution times represented using a time-
variant stochastic model. Resource managers are responsible for actively monitoring
the software system, making estimations on resource demands of the software based
on interpolation and extrapolation of its hardware/software usage profile. The software
may then be prevented from starvation of resources. A case study has also been provided
to show feasibility of this approach.

A SLA has to encapsulate all the information required to describe the constraints that
a service is expected to adhere to. The types of constraint found in SLAs differ from
service to service, hence a structured language will be needed to effectively understand

32 K. Chan and 1. Poernomo

and communicate the implications of various constraints. Skene et al.] define a
structured language, SLAng, for describing the QoS SLAs. A QoS catalogue for SLAng
has been defined based on the OMG UML Profile for QoS, which allows SLAng to be
used directly in conjunction with UML, enabling the construction of QoS-enabled UML
models. Different SLAs, usually referring to different services, may be composed. The
concept of conformance, defined in relation to QML, may be employed for checking
compatibility between SLAs. Mechanisms compatibility checks are provided that can
be used within a monitoring system for managment of SLAng constraints.

Grunske and Neumann] illustrate how QoS properties may be integrated in
software architecture specification for embedded systems. Several architecture nota-
tions (ROOM, CCM and HRT-HOOD) were been evaluated for their level of support in
specifying QoS properties. A metamodel called RT-COOL is then proposed and defined
for the purpose of QoS-enabled modelling, which supports for hardware-level specifica-
tion alongside the embedded software. Also suggested in the article are the architectural
evaluation techniques optimised for the RT-COOL model, along with examples. Nev-
ertheless this is an article aimed towards embedded systems; hence the methodologies
and techniques it detailed may not be applicable to software in other domains.

Botella et al. [IE] have defined a QoS specification language NoFun, based largely on
the quality attributes set out in the ISO 9126 standard. The various QoS characteristics
are classified in ways similar to of which has been done in the standard. The article then
defines the domains that NoFun may be used in, the metamodel that integrates NoFun
as part of its component models and the types of quality attributes in NoFun. Attempts
have also been made to map the NoFun language onto UML modelling, utilising OCL
as its counterpart in the UML metamodel. An example of such modelling has also been
included in the article.

Adaptation

A related issue of validation at the management stage concerns what is done when a
metric-based constraint is falsified and shown to be violated? In the testing phase, the
action is clearer: some reengineering may be attempted. However, this is often not a
possibility in post-deployment phases. An increasingly common solution is to employ
some form of runtime software adaptation, in which a system is dynamically reconfig-
ured in an attempt to conform to constraint requirements.

There are many systems that permit dynamic adaptation of architectures based on
real time QoS information.

We have already mentioned that Wang’s group at Boeing integrates adaptation into
its SLA management system].

In Zeng et al. 524], UDDI is used to provide adaptation based on monitored QoS
properties to assemble web service architectures of optimal performance. Al-Ali et al.
[@ﬁjdeﬁnes a language of QoS policies for grid services that are enforced by means
of adaptation mechanisms. A different approach to QoS adaptation is considered in
Sharma et al.] for the case of embedded systems. These systems do not involve
forecasting of values as part of their adaptation strategies. The ARIMA methods need
not only be applied to compute QoS queue characteristics. These strategies have the

Consistent Metric Usage: From Design to Deployment 33

potential to be combined with such (non-queued) QoS-based runtime adaptation
technologies.

Valetto and Kaiser] have investigated how adaptation may be feasible for dy-
namic software. The infrastructure used in the case was similar to that of Garlan’s
probes and gauges approach, such that minimalist probes are injected into the soft-
ware to provide gauges with sufficient information to deduce a specific QoS property
of the system. The computed value for a property is then sent back to the architectural-
level analysis module which determines whether any adaptation should be in place. A
detailed case study has been included in the article, of which the above infrastructure is
applied to a mass-market messaging service. It was found to be effective and efficient
to have such automatic handling of QoS in place, as it may replace some otherwise
error-prone manual tasks.

4.5 Consistency of Metric Semantics

It is important metrics are handled consistently across the software development life-
cycle. The major obstacle to automating consistency of requirements is that abstract
representations of QoS employed at analysis and design phases are usually semanti-
cally different from, or, at best, have orthogonal purposes to, component properties that
should be tested or instrumented in a runtime implementation. For example, it is com-
mon with such specification to contain references to contextual properties which are dif-
ficult to capture without explicit support from the operating platform. QoS monitoring
and instrumentation during testing and maintenance phases also requires components
to be made QoS-aware, imposing a direct impact on their implementations.

This problem is very much an open one. The most important and interesting work in
achieving consistency of metric semantics is done within the Model Driven Architecture
context.

Model Driven Architecture (MDA) is often proposed as a solution to help improve
functional and architectural consistency between design and implementation (for ex-
ample, in making sure that all interfaces of an abstract UML class are transformed into
appropriate operations in a corresponding web service based implementation). How-
ever, in and of itself, MDA does not solve the problem of QoS consistency across levels
and the need to monitor. Conformance to QoS constraints, even though validated at a
certain level of abstraction, will not be automatically preserved by model transforma-
tions to a lower level.

A theoretic ideal would be to prove QoS requirement satisfaction for an abstract
model of system execution (using, for example, probabilistic model checking) and then
apply provably consistent transformations over this model to an implementation. QoS
satisfaction would then be formally guaranteed by the transformation. However, in prac-
tice, this would require heavy use of formal methods and is too costly to be feasible.

This paper advocates a pragmatic remedy: transform architectures into implementa-
tions together with instrumentation for monitoring and management. Instead of proving
QoS properties hold over the transformed code, we simply instrument the system for
runtime checks on conformance to design-level QoS requirements. While not proving
a formal proof that requirements are met, the approach provides a level of trust by

34 K. Chan and 1. Poernomo

automatically supplying the means to validated whether QoS requirements are being
met in the deployed system.

The most interesting metamodelling-based approaches to nonfunctional conformance
checking currently come from Model Driven Architecture research. Solberg et al. [453]
present a good argument for the capturing and handling of QoS-requirements as an es-
sential part of the MDA approach. Merilinna 1350] defines a range of horizontal MDA
transformations (transformations involving the same abstract modelling language) that
systematically construct QoS-oriented system designs from basic specifications.

A central concept of MDA is the automatic generation of component software via
transformations over the abstract model of a system. The biggest challenge for the in-
clusion of QoS into a development process is the integration of QoS contracts into
a system model, and carrying these abstract interpretations of QoS down through the
transformations. The article by Jezequel et al.] provides a mechanism for tackling
the above.

It has suggested that a QoS contracts may be attached to the provided interfaces of
a component given the QoS contracts on its required interfaces. A QoS contract meta-
model, namely QoS Constraint Language(QoSCL) has been introduced to allow QoS
contracts and their dependencies to be modelled in a UML2 modelling environment,
and by mapping the metamodels it is then made possible to attach QoSCL contracts to
components modelled in UML2.

The article also employed the idea of contract-aware component, such that compo-
nents not only behave as required but also explicitly implemented to allow validation
of its behaviour. It is suggested that validation techniques are generally classified into
two families - testing and formal reasoning. The article the turn its focus to the testing
of extra functional behaviour.

The testing strategy used in Jezequel’s approach is similar to that of Garlan’s probes
and gauges paradigm. For relating it to MDA probing codes are weaved into compo-
nents. Monitoring components are then used for observation the behaviour of com-
ponents, checking for any violations of contracts. An example has been provided to
illustrate how that can be done.

Examples have also been included for illustrating we can make use of the attached
provided and required QoS contracts to assert predictions on component QoS. An ex-
ample has also been shown on how contracts expressed in OCL can be transformed to
a specific CLP-compliant language using model transformation.

Grunske et al.] address the QoS refinement process at software architecture level
using horizontal transformations (transformations between models of the same meta-
model). In the light that the functional aspects of software may be specified in software
architecture as interface specifications, a framework for defining functional behaviour
preserving transformations has been presented. QoS refinement may be achieved with
the application and subsequent analysis with different architectural patterns and styles.
A proof algorithm is also introduced for verifying behaviour equivalence of such archi-
tectural transformations. This article serves as a fine example of how horizontal trans-
formations may be practically employed as part of a performance engineering process.

Solberg et al.] point out the shortcomings of MDA in relation to Quality of
Service in software, with the reason being a lack of precise relations between different

Consistent Metric Usage: From Design to Deployment 35

models, as well as between models and implementations with respect to QoS. It was
suggested that the capturing and handling of QoS-requirements has to be an essential
part of the MDA approach in order to gain successful system development of real time
and embedded systems. The article describes some significant aspects of a QoS-aware
MDA approach for system development and execution. In particular it has been stressed
that QoS specifications should become an inherent part of the transformations, PIM and
PSM models in MDA. Examples and pointers have been given as to how QoS may be
incorporated in a MDA process. Nevertheless the article is critical on the importance of
integrating QoS in every stage of the MDA process for the successful treatment of QoS
in a MDA-based development.

While quality of service enabled metamodels are being developed readily (e.g. QML),
the focus is usually over the construction of QoS-enabled models from specification to
system design. The thesis of Merilinna [@] suggests a compliment using horizontal
transformation, that is, model transformation which retains abstraction level while re-
fining or enriching a model. The main objective was to enable transformations between
different design styles and patterns. For example, as a refinement process a non QoS- en-
abled platform independent model may be enriched through a transformation to include
quality metric parameters, while retaining its abstraction at the platform independent
level. A model can also be transformed into designs using different styles and patterns
and then compared for various properties. The thesis also addresses the issue of trace-
ability of transformation, via inclusion of transformation record as a product of trans-
formation. By virtue transformations are performed based on rules of element mapping
between metamodels. A transformation record includes the mapping used in the trans-
formation as well as the transformation being made. Using this information we are able
to trace or reverse any transformations of models between metamodels.

4.6 Conclusions

As our survey shows, there has been progress towards solving the problem of consis-
tency and validation. However, there is still much work to be done.

Better support of metric validation at the testing phase is needed. A promising poten-
tial means of achieving this would be to apply the kind of MDA techniques described
above to test case generation.

There is a subtle issue that remains with respect to implementation of falsification.
In the state of the art, the evaluative semantics of a metric is implemented through mon-
itoring and instrumentation code, generated by some model driven process. But what
guarantee do we have that this generated code really does provide the means of falsi-
fying a metric constraint? For example, an measurement of something like reliability
requires us to instrumentation of code and depends on us the instrumentation really
does provide a reliability value.

Formal methods has the potential to play a greater role. The problem of consistency
and validation have been long discussed within the context of functional properties of a
system. While formal methods approaches such as refinment calculus or the B method-
ology have been effective in developing code that is consistent with its model and pro-
viding a guarantee that design properties are correctly implemented, they have been less

36 K. Chan and 1. Poernomo

effective in practice of most industrial software engineering projects, particularly in the
enterprise domain. Simply because a metric-oriented property is less complicated than a
functional property, and nonfunctional predictions may be made over less complicated
behavioural models than those required for functional predictions, intuition leads us to
believe the application of some formal methods techniques to the consistency and val-
idation of metric-oriented properties is more practical and scalable than for functional
properties. We believe this is a key open problem in the field.

5 Basic and Dependent Metrics

Ralf Reussner and Viktoria Firus

University of Karlsruhe (TH), Germany

Besides the distinction between empirical and analytical metrics, metrics can also be
distinguished whether they are basic or dependent.

5.1 Defining Basic and Dependent Metrics

The concept of basic and dependent metrics is not established in literature, much more,
it is introduced firstly in this volume. The rationale behind this distinction is a clarifi-
cation of metrics like scalability, efficiency, and others which themselves are defined in
terms of other metrics. Unfortunately, their presentation in literature is inhomogeneous
and most often oriented towards a specific application domain (e.g., scalability might
be defined differently in terms of users, threads, resources, etc, and can mean response
time, throughput or other metrics). Hence, the following is motivated by the lack of a
general treatment of such metrics.

A basic metric can be any analytical or empirical metric, where its dependencies on
other variables is not made explicit (i.e., where influencing variables are assumed to
be constant). For example, the throughput (as measured at a specific data connection
within a system) can be considered as a basic metric, if influencing variables (e.g., the
message length, the number of processes utilising the connection concurrently, etc) is
considered to be constant.

A dependent metric is an analytic or empirical metric where its influencing variables
are made explicit. An example is the scalability of the throughput in terms of the num-
ber of clients accessing a data connection. Here, a metric (the throughput) is given in
dependency of another variable (the number of clients). Accordingly, a dependent met-
ric is given by a set of tuples (metric, variable(s)). In case of a empirical metric as a
metric of a dependent metric, these tuples can be a finite set of pairs of measured val-
ues and values for variables (e.g., throughput in dependency of threads: {(1 MB/sec,
1), (500 KB/sec, 2), (320 KB/sec, 3)}). In case of an analytical metric as a metric of
a dependent metric, the dependency is most likely given as an analytical formula, e.g.,
throughput € O(1/number of threads).

5.2 Examples

For practical reasons of performance and parallelisation evaluation, a set of dependent
metrics has evolved (see for example Kumar et al. , pp- 118]), in particular in the
domain of high performance computing, which also has found its application in other
domains.

Scalability: Change of metric A in dependency of change of a variable B. E.g., “Change
of response time when increasing the number of users.”

I. Eusgeld, F.C. Freiling, and R. Reussner (Eds.): Dependability Metrics, LNCS 4909, pp. 37 2008.
(© Springer-Verlag Berlin Heidelberg 2008

38 R. Reussner and V. Firus

Speedup (S): Change of metric A in dependency of change of a variable B describ-
ing the amount of a resource. E.g., “Change of response time when increasing the
number of servers.”

Efficiency (E): The efficiency is the gain (speedup) related to the amount of resources
to be spend to achieve this gain. Hence, £ = S/B.

Costs: The costs are the results of metric A times the amount of resources to be used
to get these results. Hence, costs are the product A x B.

Note that the term efficiency is defined here as a dependent attribute and not, as in
the ISO 9126 as a set of performance-related metrics. Similarly, the definition of the
term costs differs from its use in complexity theory (where it usually relates to time of
memory consumption) or in the business domain (where it relates to expenditures of
any kind).

The main result of this discussion is, that a dependent metric, (e.g., scalability) is not
tied to a specific metric (e.g., throughput). It can also be defined for reaction-time or
response-time. Although dependent metrics are often defined using such a performance
metric, the concept of dependent metrics is not limited to this group of metrics. For
example, it also makes sense, to define a reliability-scalability metric, e.g., the MTTF
in dependency of the number of users.

6 Goal, Question, Metric

Heiko Koziolek

University of Oldenburg, Germany

This chapter gives an overview over the Goal-Question-Metric (GQM) approach, a way
to derive and select metrics for a particular task in a top-down and goal-oriented fashion.

6.1 Motivation

Defining metrics for a measurement or prediction approach in a botfom-up manner is
generally considered problematic. Without inclusion of the context and the goal of mea-
suring or prediction, it is usually unclear which metrics shall be selected and how the
selected metrics can be interpreted. If lots of data has been measured without a pre-
defined plan for the evaluation, it will usually be very difficult to select the relevant data
and to draw proper conclusions from the measurements.

Therefore, embedding metrics into a goal-oriented framework is widely regarded as
a good practice. The Goal-Question-Metric (GQM) approach presents such a frame-
work. It was developed by Basili and Weiss during the 1980s [42] and later extended
by Rombach]. Opposed to the bottom-up approach, metrics are defined top-down
in GQM. First, specific goals are stated, then questions are asked, whose answers will
help attaining the goals. The metrics are defined in a third step to provide a scheme for
measuring.

By applying GQM, goals and metrics are tailored for a specific measurement set-
ting. Stating goals in advance leads to a selection of only those metrics that are relevant
for achieving these goals. This reduces the effort for data collection, because only nec-
essary data needs to be recorded, nothing more, nothing less. The interpretation of the
metrics after measurement is rather effortless, because GQM creates an explicit link be-
tween the measured data and the goals of measuring before data collection. This way,
misinterpretations of data can be avoided.

Although the GQM approach was originally used to improve software products and
development processes, the underlying concepts are generic and applicable in any mea-
surement setting.

The next section describes the process of applying the GQM-paradigm in detail.
Another section explains how goals, questions, and metrics should be defined.

6.2 Goal-Oriented Measurement

The method of applying the GQM paradigm consists of four phases]: planning,
definition, data collection, interpretation (see Fig. [T)).

For the initial planning phase, first a GQM-team is established and the desired im-
provement area (e.g., reliability, performance, security, etc.) is identified. Afterwards,
the team selects and characterises the product or process to be studied. The result of this

I. Eusgeld, F.C. Freiling, and R. Reussner (Eds.): Dependability Metrics, LNCS 4909, pp. 39 2008.
(© Springer-Verlag Berlin Heidelberg 2008

40 H. Koziolek

Goal
> Goal ™ > Attair?rar{\ent
Question |- > Answer
9‘2 Metric » M?::rl:tre'
3 Definition Interpretation
- Collected Data
Planning Data Collection

Fig. 1. The 4 phases of the GQM-method [481]

phase is a project plan that outlines the characterisation of the product or process, the
schedule of measuring, the organisational structure, and necessary training and promo-
tion activities for people involved in measurements.

During the definition phase, measurement goals are defined. A template for goal
definition will follow in the next section. For the purpose of defining goals, GQM in-
terviews may be conducted with people involved in the process or product under study.
Based on the goals, questions are stated, asking for specific quality attributes and mak-
ing certain aspects of the goals more concrete. For each question a hypothesis with an
expected answer should be defined. Afterwards, metrics are defined for each question
and checked on consistency and completeness. Results of this phase are a GQM plan, a
measurement plan, and an analysis plan.

The actual measurement takes place in the data collection phase. Data collection
may be performed manually or electronically and may involve automated data collec-
tion tools. A measurement support system consisting of spreadsheets, statistical tools,
database applications and presentation tools should be established for this phase.

In the interpretation phase, the collected data is processed according to the metrics
defined before to gain measurement results. The measurements can then be used to
answer the questions, and with the answers it can be evaluated if the initial goals have
been attained.

6.3 GQM Paradigm

A GQM plan consists of goals, questions, and metrics in a hierarchical structure (see
figure2). Before measuring, the elements are defined in a top-down manner. After mea-
suring, the plan can be used bottom-up to interpret the results.

Goals are defined on a conceptual level and later made operational by questions. For
clearness, each GQM plan should contain one goal. Goals can be derived by studying
the policy and the strategy of the organisation that applies GQM. Interviewing relevant
people and checking available process or product descriptions may also help in defining
goals. If goals are still unclear, first modelling the organisation might be necessary to
derive them.

Goal, Question, Metric 41

- AN\

<Question> <Question> (Question)

Definition
uonelaidiaiu|

; ; (Metric) (Metic) (Metic) (Metic) | |

Fig. 2. The GQM-paradigm [481]

Goals must be documented in a structured way, preferably using the following tem-
plate. Goals are defined for a purpose (e.g. understanding, improving, controlling), for
the object under study (e.g. process, product), for a specific issue or quality attribute
(e.g. reliability, security, performance), from a perspective (e.g. user, developer), and
within certain context characteristics (e.g. involved persons, environment, resources,
organisations). For example, a goal could be:

“Improve (=purpose) the reliability (=issue) of product X (=object) from the
viewpoint of the user (=perspective) within organisation Y (=context).”

Several questions are usually asked to achieve each goal. While goals are on a more
abstract and conceptional level, questions shall refine goals and make them operational.
By answering the stated questions, it should be possible to conclude if a goal has been
reached. Questions should be defined on an intermediate level between goals and met-
rics. They should neither be too abstract, in which case it would be difficult to reveal
the relationship to the collected data, nor should they be too detailed, so that an in-
terpretation of the answers towards the goal would be difficult. If questions are stated
in a quantitative way, data can be collected by measurements. If questions are stated
in a qualitative way, questionnaires are necessary to answer them. Expected answers
to the questions are formulated as hypotheses. Hypotheses increase the learning effect
from measurements, because they allow comparing knowledge before and after mea-
surements. For example, a question could be:

“What is the probability of failure on demand for function Z in product X ?”
A matching hypothesis would be:

“The probability of failure on demand for function Z in product X is below
0.0001 percent.”

42 H. Koziolek

Table 1. Example GQM plan

Goal Purpose Improve
Issue the reliability
Object of product X
Viewpoint for the user
Context within organisation Y

Question Q1 What is the probability of failure on demand for function Z?
Metric M1 POFOD

Question Q2 How erroneous does function Z behave?

Metric M2 MTTF

Metric M3 MTTR

After these steps, several metrics can be defined for each question. One metric may
be used to answer different questions under the same goal. Metrics are on a quantitative
level making it possible to assign numbers to a quality attribute. Metrics are means to
map reality into comparable values. They must be defined to answer the asked questions
and be able to approve or disprove the stated hypotheses. Already existing data can be
used to define metrics. A metric may be objective, so that different people measuring
the metric would gain the same results (e.g. the number of jobs completed during a
time span). Instead, subjective metrics may produce different results depending on the
persons measuring (e.g. the readability of a text). Objective metrics are suitable for
more mature objects, while subjective metrics can be used for more unstable or unclear
objects.

A simple GQM plan can be found in Tab.[[l Any GQM plan needs permanent eval-
uation and improvement. Imprecise goals need to be corrected and no more matching
metrics need to be updated.

7 Quality of Service Modeling Language

Steffen Becker

University of Karlsruhe (TH), Germany

This chapter gives an overview over the the Quality of Service Modeling Language
(QML), a language which can be used to describe QoS offerings or needs of specified
services.

7.1 Motivation

A specification of the quality of a service is an important prerequisite for building de-
pendable systems. During the requirements phase it can be used to gather the quality
needs of the end user of a software system. During the design phase it helps in making
design decisions and in early, architecture based quality evaluations. During runtime
and testing it can be checked by monitoring tools to find insufficient quality character-
istics of the running system. Further on, Quality of Service (QoS) negotiations, graceful
QoS degration or self-healing systems rely on specifications of the desired QoS levels.

In order to support the specification of QoS, the Quality of Service Modeling Lan-
guage (QML) has been developed at HP Software Technology Laboratory by 1. Itis
a language which can be used to describe QoS offerings or needs of specified services.
A short overview of the most important concepts of the QML is given in the following
and further detailed by utilizing a running example.

7.2 Main QML Concepts

QML introduces several concepts to model quality characteristics of services. Dimen-
sions characterize a measurable value and several dimensions are bundled into contract
types. For specific contract types multiple contracts using the dimensions of the type
can be specified. Finally, profiles bind contracts to interface methods.

Dimensions

QML can be used to model any type of quality characteristic, e.g, it has no explicit
quality model. Hence, it allows the specification of any generic quality attribute. Never-
theless, the specification has to introduce the type of the utilized attributes. This is done
by using quality dimensions.

A dimension can be seen as the declaration of a domain of a variable. It tells the
range of possible values of instances of the declared type. To give an example consider
the quality characteristic performance. A typical attribute for performance is the timing
related parameter delay. The delay describes the time which passes between the issue of
a call and its return to the caller. Hence, it is a non-negative float point number having
some kind of unit like seconds or microseconds associated to it. Additionally, in QML

I. Eusgeld, F.C. Freiling, and R. Reussner (Eds.): Dependability Metrics, LNCS 4909, pp. 43 OOSA
(© Springer-Verlag Berlin Heidelberg 2008

44 S. Becker

allows to specify a direction of the dimension, e.g., a specification of an ordering of
the actual values. This allows to say, whether small or large values are better. For the
example of delay small numbers are better as they indicate faster response times. Using
QML, the delay dimension would look like code fragment[l

delay : decreasing numeric msec;

Code fragment 1: A QML dimension

The first parameter (decreasing or increasing) describes whether smaller or larger
values are better. The second determines the type of the dimension. Here we use a
numeric type allowing float point values. Additional types available in QML are enu-
merated domains and set domains. Enumerations contain a list of names and a value can
have exactly one of the names as content. A set domain is also a set of names, but the
values are any possible subset of the set of names. Additionally, in both cases, it is pos-
sible to define an order on the set of names to introduce again a goodness relationship.
An example for each concept can be found in code fragment[2]

As detailed in Sect. the specification of the direction can be used to check
the interoperability of interfaces. For decreasing types like response times, a provided
smaller response time than the required response time is conform. For increasing type
like network throughput, a provided larger throughput is conform to a required smaller
throughput.

cypher_algorithm : enum { RSA, DSA };
cypher_strenght : increasing enum { 1024, 2048, 4192 }

with order { 1024 < 2048, 2048 < 4192 } bits;
login_mechanisms : set { password, smartcard, fingerprint };

Code fragment 2: QML enumeration and set domains

Finally, every dimension can have an optional unit specification, like bits or msec
in the examples above.

Contract Types

After introducing the dimensions and their associated specification of a partial order
the following shows how to further abstract and bundle the dimensions into contract
types. A contract type is closely related to a quality characteristic as introduced by

]. Typical characteristics are performance, reliability or security. Note again, that
QML does not define any dimension or contract type. This has to be done by the
users of QML.

Hence, contract types bundle related dimensions and subsume them using a common
characteristic. To give an example, we introduce a performance contract type. Perfor-
mance can be determined by several dimensions. In this case the specification uses the
delay and the throughput of services to describe their performance. The complete con-
tract type can be found in code fragment[3l

Quality of Service Modeling Language 45

type Performance = contract {
delay : decreasing numeric msec;
throughput : increasing numeric business_transactions / sec;

Code fragment 3: An example QML performance contract type

Contracts

Based on a contract type there can be several contracts. A contract is used to constrain
each dimension in the contract type. The domain of each dimension is divided into a set
of values which are valid and another set of invalid values. If the dimension supports
an ordering the use of comparison operators (greater than, less than) is also allowed in
a contract.

For example, we need to specify that a service has an upper bound concerning its
delay and a lower bound of its throughput. This is a situation likely to happen in a
banking application. A transaction has to be finished in time so that there are no delays
in the overall business process. Also a certain amount of fund transfers has to be done
per second as otherwise the system would collapse.

Using QML, this situation can be described using a contract as depicted in code
fragment[] which is based on the contract type taken from code fragment[3

FundTransferContract = Performance contract {
delay < 100ms;
throughput > 10.000 business_transactions / sec;

Code fragment 4: An example QML contract

Aspects

Several of the dimension values cannot be measured exactly using a single figure. For
example, the delay caused by a service call varies over time. Hence, the delay can only
be characterized using statistical means. QML supports four different types of stochas-
tical information. Mean and variance are characteristic attributes of probability den-
sity functions. Percentiles and frequencies describe probability distribution functions
in more detail. An explanation of these basic statistical concepts can be found in basic
statistic literature and is omitted here. An example is depicted in code fragment[3] (units
are omitted).

Profiles

After the definition of contracts including the introduced constraints, one has to decide
which constraints should be applied to which services. This binding between interface
methods and constraints is done using profiles in QML. A profile maps contracts to sin-
gle methods or all methods of an interface respectively. This is done by stating either for

46 S. Becker

FundTransferContract = Performance contract {

delay {
mean < 100;
variance < 10;

}i

throughput {
percentile 0 < 9.000;
percentile 50 < 10.000;
percentile 80 < 12.000;

Code fragment 5: Example QML aspect specification

a whole interface or for single methods which contracts they have to fulfil. Additionally
it is possible to introduce new contracts or strengthen existing ones inline.
Take a look at code fragment[6l

interface BankSystem {
void TransferMoney (Account a, Account b);
[...]

}

transferMoneyProfile for BankSystem = profile {
require FundTransferContract;
from TransferMoney require Performance contract = {
delay < 80ms;
Yi

Code fragment 6: Example QML profile

The first statement of the profile applies the defined FundTransferContract
to each service of interface BankSystem. The second statement applies an inlined
performance contract additionally to the already applied one. This contract defines an
upper limit for the delay of the Trans ferMoney service of 80ms. Note, that the other
constrains concerning the mean and the variance and the constrains for the minimum
throughput also apply to service Trans ferMoney.

Contract Refinement

Besides the possibility of using inlined contracts, QML has also explicit support for
contract refinement, which allows the specification of contracts based on existing ones.
This is especially useful for programming languages supporting subtyping as the con-
tract of a subtype should be a refinement of the contract of its supertype. The refined
contract has to be conformant to the original one (see Sect. [Z.2] for further details).

Assume we want to define the inlined contract of example @ explicitly, for example
to reuse it. The result can be found in code fragment[7l

Quality of Service Modeling Language 47

SpecialFundTransferContract = FundTransferContract refined by {
delay < 80ms;
Y

Code fragment 7: Example QML contract refinement

Conformance

The pure specification of QoS offerings or requirements helps when doing monitoring
during runtime. Using the collected data it is possible to determine whether the client
or the server of a service is responsible for an insufficient quality. Nevertheless, the
checking of the quality specifications already at design time is desired if systems should
be built which do prevent interoperability mismatches by design.

To support the task of the developer to check for interoperability problems when
binding a client requesting a certain service with specific quality requirements to a
server offering that service with a specified quality profile QML introduces a confor-
mance relation. This relation has to be built from the basic dimensions and contract
types. Additionally, it has to include a concept how to deal with statistical information
given in aspects.

For elementary, ordered dimensions the conformance relation is reduced to the order
given by the used data type. For decreasing values smaller values are conforming to
larger ones. For example, an upper bound for the delay of 80ms is conform to an upper
bound of 100ms. For increasing values it is the other way round. The concepts is
applied in the same way for user defined orders of enumerated or set domains.

Taking aspects into account is a bit more complicated as it is not intuitively clear how
to define the conformance relationship in this case. QML uses the definitions shown
in Tab.[1

For percentiles and frequencies QML uses a very strict definition of conformance
which on the other side is the only mathematical exact one. Nevertheless, it implies that
you need the same set of percentiles on the server side than you have on the client side. In
practice this might be a restriction which renders the conformance checks impractical.

Table 1. QML conformance rules for aspects (taken from Frglund and Koistinen])

aspect conformance rule

frequency For every constraint of type frequency R = P in D there must be a constraint with
the same aspect signature in S that is stronger or equally strong with respect to the
value P.

percentile For every constraint of type percentile P = V' in D there must be a constraint with
the same aspect signature in S that is stronger or equally strong with respect to the
value V.

mean If D has an mean constraint, the mean constraint for S must be stronger or equal to
the one in D.

variance If D has a variance constraint, the variance constraint of .S must be smaller or equal
to the variance of D.

D = Demand
S = Service

8 Markov Models

Michael Kuperberg

University of Karlsruhe (TH), Germany

This chapter gives a brief overview over Markov models, a useful formalism to analyse
stochastic systems.

8.1 Introduction to Markov Models

To estimate the dependability metrics of a system, knowledge about its behaviour is nec-
essary. This behaviour can be measured during the operation of the system, resulting in
a behaviour model (possibly without knowledge of the system’s interna). Alternatively,
a model of the system can be created at design time to predict its behaviour, so that the
internal structure of the system is reflected by the model.

The constructed system will execute in an environment where it will be subject to
indeterministic influences (for example, the availability of services the system depends
on might exhibit random behaviour). This means that the model must reflect the ran-
dom/stochastic behaviour of the entire system and that the mathematical parameters
must be determined at design time or identified at runtime.

In both scenarios, Markov models prove useful, since they are accompanied by algo-
rithms that allow to compute relevant figures (metrics) or random distributions of those
figures. For example, the behaviour of a software component with the identified states
"working" (S,,) and "broken" (S}) can be expressed by the Markov model shown in
figure[Tl Transitions denote possible state changes and are annotated with probabilities.
With this Markov model, metrics such as Mean Time To Failure (MTTF) (see Sect.
and others can be computed.

0.8
0.95 0.05
0.2 0.95 P=
0.80 0.20
0.05

Fig. 1. Graph and transition probabilities matrix P for the Markov model of a simple software
component

The concepts and formulas that Markov models are built on will be introduced in
the next sections in detail, accompanied by examples and the characteristics that can be
obtained from the models. In figure[Tl the Markov model is accompanied by the matrix
P that specifies its transition probabilities. For example, the probability to change from
"working" state to "broken" state is 0.05.

The Markov model shown here is a so-called discrete-time Markov chain. It is as-
sumed that the system’s state only changes after a fixed time interval. For example,

I. Eusgeld, F.C. Freiling, and R. Reussner (Eds.): Dependability Metrics, LNCS 4909, pp. 48 2008.
(© Springer-Verlag Berlin Heidelberg 2008

Markov Models 49

if the component state is determined every second and the component is definitely in
working condition when started up (f = 0), the initial state probability vector pg (here,
Po = (1 0)) can be used to start the second-after-second chain of states. By multiply-
ing po with the matrix P, p; is obtained, which corresponds to the component’s state
probabilities at time ¢ = 1: py = (0.95 0.05).

The above example has an important property, the Markov property which describes
the situation where the probability to be in a particular state of a model at time ¢ + 1
depends only on the state in which the model was at time ¢, as well as on the state
transition probabilities (matrix P) associated with the model. This independence of past
states (at time ¢ — 1, t — 2 etc.) is sometimes referred to as memorylessness of a Markov
model and has a large impact on the applicability of the model. The formal definition
of the Markov property (not only for discrete time values as in the above example, but
also for continuous time Markov models) will be given in the next sections.

A Markov chain consists of a set of discrete states and is in exactly one of these
states at any point of timd]. Markov chains are widely used, for example in queuing
theory (cf. Sect. [0.2)). The notion of a chain was chosen because the Markov chain is
a stochastic process that "walks" from one state to exactly one state at transition time,
allowing for a sorted representation of the chain’s condition.

The transition probabilities characterise the Markov chain and allow for meaningful
classification of both Markov chains and their single states. In some cases, the structure
of the Markov model is unknown and must be reconstructed from data that has been
collected empirically, for example in Hidden Markov Models (HMMs, see [@]).

We will start with the discussion of discrete-time Markov chains (DTMCs) in
Sect. and then generalise to continuous-time Markov chains (CTMCs) in Sect.
before presenting applications of Markov models for dependability analysis in Sect.[8.4l
Markov Reward Models (MRMs) are treated separately in Sect24.2] of Chap.

8.2 Discrete-Time Markov Chains - DTMC

Overview

Formally, a discrete-time Markov chain (DTMC) is defined as a stochastic process with
the discrete parameter space T := {0, 1,2, .. .}. The (discrete) state space I of a DTMC
consists of random variables X; with ¢t € T (X = sq is the starting state) and permits
to state the Markov property for DTMCs as

P(Xn = Sn‘XO = SO7X1 = S81,..- 7Xn—1 = Sn—l) = P(Xn = 3n|Xn—1 = Sn—l)
From now on, a shorter notation for probability mass functions will be used:
pig(m.n) = P(Xy = j| X = 1) and pi(n) = P(X, = i)

We will limit ourselves to homogeneous Markov chains: for them, the transition
probability from state j at time m to state k at time n only depends on the "distance"
n — m between both states and is independent of actual values of m or n.

! The more general notion of Markov processes is not limited to discrete states but will not be
considered here.

50 M. Kuperberg

Formally, for homogeneous DTMCs, p;;(d) == p; ;(t.,t +d) Vt € T,d > 0.
The above software component example is a homogeneous discrete time Markov chain,
since the transition probabilities are independent of the time.

Using the homogeneous one-step transition probabilities p;;(1), it is straightforward
to compute the probability of the chain sg, s1, . .., Sy its probability is

Psop * Psgsi (1) . pslsz(l) et psn,—lsn(l)

(where pg, is the probability to be in initial state sy). The one-step transition prob-
abilities are collected in the fransition probability matrix P := [p;;(1)] for which
0 <pi(1)<landd ., pi;(1) =1hold, ¥ j € I. The graph in figure[is called the
state transition diagram.

To obtain the n-step transition probabilities p;;(n) for any n other than 1, we define
pi;(0) to be 1 if i = j and 0 otherwise. Then, using known p;;(1), we can generalise to
any n through the Chapman-Kolmogorov equation if the length n of a transition is split
into two parts (of length [and m) and all possible states reached after [transitions are
considered.

pi;(n) is then seen as the sum of probabilities of "ways" that pass through all possible
states 7 after [transitions: with l +m =mn, [> 1, m > 1,

pik(l+m) = Zpi_j(l)pjk(m)

It can be proved that the calculation of n-step transition probabilities can equivalently
be done by obtaining the n-step stochastic matrix P(n) from the one-step matrix P with
the formula P(n) = P™ = P - P(n — 1). If the probabilities for states 0, 1, . . . at time
t are collected into a vector p(t) := [po(t), p1(t),...], the formula to compute p(n)
using the matrix P is

. 0.95 0.05
For the software component example (which had P = (0.80 0.2 0>

andp(0) = [1 0]), the computation of p(2) yields

0.95 0.05)2 _[10]. <0.9425 0.0575

p(2) = [10]- (0.80 0.20 0.9200 0.0800) = [0.9425 0.0575]

State Classification

States are classified according to the number of visits to detect tendencies and specifics
of a model. To illustrate the state classification with an appropriate example, we will
extend our previous example with additional states, as shown in figure 2

It is obvious that for the state .S; (where the component is initialised), the Markov
process will not return to it, since no transitions to S; exist. Such states of a DTMC are
called transient or, equivalently, nonrecurrent. A state that cannot be left once a Markov
process has entered it is called absorbing and can be recognised by p;; (1) = 1 (there is
no such state in figure[2)).

Markov Models 51

0.8
0.05
1 0.00 1.00 0.00

P=/0.00 0.20 0.80
0.00 0.05 0.95

Fig. 2. Graph and transition probabilities matrix P for an extended Markov model of a software
component

States Sy ("broken") and S, ("working") are recurrent since the process will even-
tually return to them with probability 1 after some unspecified time ¢. These two states
communicate since there are directed paths from S to S, and vice versa (in contrast,
S; and S, do not communicate).

For recurrent states, one interesting measure is the mean recurrence time, which can
be used for the mean time to failure (MTTF) metric. With f;;(n) as the probability
that the process will return to state ¢ after exactly n steps for the first time, the mean
recurrence time y; for state ¢ can be computed to be

(o]
pi =y nfi(n)
n=1
Depending on the value of u;, a state is recurrent nonnull/positive recurrent if p; is
finite and recurrent null if 1i; is infinite. It is easy to see that for any positive recurrent
state 4, 3K Vk > K : fi;(k) =0, fi;(K) > 0, i.e. the state will always be revisited
after K or less steps.
For any recurrent state, its period, defined as the greatest common devisor of all
n > 0 for which p;;(n) > 0, can be computed. If the period is greater than 1, the state is
called periodic, and aperiodic otherwise. The states Sy, and .S, are both aperiodic; state
S; is transient and thus neither aperiodic nor periodic. The overall state classification of
discrete-time Markov chains as outlined in]is displayed in figure[3l

8.3 Continuous-Time Markov Chains (CTMC)

Mathematical Foundations

A Continuous-Time Markov Chain (CTMC) allows state changes at any instance of
time, leading to continous parameter space 7' := [0, 00), but state space I remains
discrete as in DTMCs. Reformulation of the Markov property for CTMC, given an
increasing parameter sequence 0 < tgp < t; < ... < ln_1 < {5, yields the requirement
that

P(X(ty) = 20| X (ta_1) = Tn_1,. .., X (to) = z0) =
= P(X(tn) = 2| X (tn-1) = Zn_1)

52 M. Kuperberg

state

‘ recurrent ‘ ‘ transient ‘

‘ null ‘ ‘nonnull‘

‘ aperiodic ‘ ‘ periodic ‘ ‘ aperiodic ‘ ‘ periodic ‘

Fig. 3. State classification for discrete-time Markov chains according to]

As in the previous section, two structures completely define a Markov chain:

1. the vector P(Xy,) = {k|k =0, 1,2, ...} that contains the initial probabilities
P(X;, = k) for all states k at time ¢
2. the transition probabilities

pij(t,v) = P(X(v) = j|X(t) =)
with 0 < ¢ < v and the special cases p;;(t,t) = 1 and p;;(t,t) = 0 fori # j

Note that Vi, 0 < ¢ < v the transition probabilities fulfill } ., p;; (t,v) = 1.

A CTMC is homogeneous with respect to time if for p;; (¢, v), only the time differ-
ence v — t matters, that s, if Vd > 0, p;; (¢,v) = p;j(t + d, v + d). For a homogeneous
CTMC and time difference (distance) 7, we define

Vit Z 0: pij(T) ::pi.j(t,t+T) = P(X(t+7') :j|X(t) = Z)
The general probability to be in state j at a time ¢ is defined as

mj(t) := P(X(t) = j)

with

P(X(t) = j) = 3 P(X(t) = jIX(v) =)P(X(v) = i) = 3 piy (0, 6)mi(0)

el el

Since it is difficult to work with the dynamic Chapman-Kolmogorov equation

pij(t,v) = Zpik(t,u)pkj(u, v) (0<v<u<t)
kel

the rates of transitions for CTMC are defined as follows: net rate out of state j at
time ¢ is

pii(t,t) = pi(t,t+h) _ . 1

—pjj(t,t+h)
h h—0 h

0(t) = () =

(P33 (V) Jo=s = lim

and the rate from state 7 to state j at time ¢ (for ¢ # j) is

. d o pig(tt) —pi(tt+h) L pi(tt+h)
Giat) = gy Pia (0, o=t = Jin —h =hme

Markov Models 53

q; (t) is the net rate out of state j at time ¢, while ¢;;(t) is the rate from state ¢ to state
j at time t. Over a series of transformations (cf. 1), the Kolmogorov Differential
Equations can be obtained (with Q(¢) := [¢;;(¢)] and ¢;; (t) = —¢;(1)):

dP(v,t)
dt

dP(v,t)

= P(v,t)Q(t) and d

= Q()P(v,1)

Rewriting this equations for a homogeneous CTMC, we obtain

dP(t)
= P(t
= P0Q
and dn(t)
™
=T7(t
The (infinitesmal) generator matrix Q) := [g;;(t)] has the following properties: row

sums are all equal to 1, V2 : ¢;; < 0 and the transition rates from state ¢ to state j
fulfill Vi # j,q;; > 0. For the discussion of semi-Markov processes as well as non-
homogeneous CTMCs, we point to l47).

State Classification

While recurrent null/non-null and transient states have the same meaning in CTMCs
as in DTMCs, a CMTC state 4 is absorbing if Vt Vj # i holds p;;(t) = 0. A CTMC is
irreducible if Yi, j 3t so that p;;(t) > 0 (i.e., any state can be reached from any other
state in a transition of suitable duration ¢ with non-zero probability).
Steady-state values
m:={mlj=0,1,2,...}

of a CTMC are defined by

= tlirglo m;(t)

and are subject to . m; = 1 and to 7@ = 0. An irreducible CTMC with all states
being recurrent non-null will have unique 7 that do not depend on the initial probability
vector; all states of a finite irreducible CTMC are recurrent non-null, so it is possible to
compute the steady-state values for it.

Queues and Birth-Death Processes

Although the equations of continuous-time Markov chains look intimidating at first
sight, they have a strong practical importance as the queuing theory is footed on them.
We will introduce queues starting with the example from figure] and also briefly dis-
cuss birth-death processes which represent the abstract structures behind the queues.
The pictured queue shall have the properties that elements to it arrive one-by-one
in a random manner and that there is only one "server position" where elements are
processed on FCFS basis, after which the elements leave the queue. The elements arrive
at the end of the queue with the birth rate \; after being served, the elements leave the
queue with the death rate pi. Equivalently, the arrival times are exponentially distributed

54 M. Kuperberg

A u

Fig.4. A simple queue (M/M/1) as an example of a continous-time Markov chain

OO ol
n

Fig. 5. The transition state diagram for the queue from figure [

with mean 1/) and the service times are exponentially distributed with mean 1/p. In
figure Bl the transition state diagram for this queue is pictured.

One of the quantities that a queuing model can help to determine the expected (aver-
age) number of elements in the system, N (¢), using the traffic intensity p

pi=Ap

of the queue. Considering the possible numbers & of elements in the system (k € [0, 00),
k € N), we need their probabilities 7, for weighting:

E[N] = ikﬂ'k

Without citing the proof (which can be found in]), following formulas can be
used if p < 1 (i.e. if the queue is stable) to compute the steady-state probabilities 7; for
any state 4:

k
770:1—>\:1—p and (for k > 1) ﬂk:<)\> mo = pFmo = p* (1 = p)
K K

As an example, consider a software component that compresses chunks of data with
various sizes. The component is implemented as a single thread and sends/receives the
data chunks asynchronously. The time between data chunks arrivals is exponentially
distributed with mean 100ms (= 1/)). Since the sizes of data chunks vary, the service
time is also exponentially distributed with the mean 75ms (= 1/p). Thus, the traffic
intensity pis 0.75 < 1 and mg = 0.25, m; = 0.1875, w2 = 0.140625 and so on.

Using p and given queue is in stable case, the mean and the variance of N (¢) can be
computed without prior computation of all 7, (see]):

EN] =Y km, = 1f and - VarlN) = ©
~ p p

For the above data compression example, E[N] = 3 and Var[N] = 12.

Markov Models 55

Another measure of interest in queues is the response time R, i.e. between the arrival
of the element at the end of the queue and the time that element leaves the queue. To
compute the mean of this random variable in the steady state case (p < 1), the Little’s
formula E[N| = ME|R] is used, as it creates the relation between the response time
and the number of elements in the queue. Its interpretation is that the (mean) number of
elements in the queue is the product of arrival rate and the (mean) response time. Using
the above formula for E[N],

k 1/
E[R}:Z/\wkzli
k=0 P

11 i ‘; can be interpreted as the quotient of the (mean) service time and
the probability of the queue to be empty. For the above example, F[R] = 300ms.

can be derived.

8.4 Markov Chains and Dependability Analysis

Markov chains will be used on several occasions throughout this volume. In Sect.
Markov process theory is used to calculate hardware availability through employment
of continuous-time stochastic logic (CSL) and with possible application of model-
checking algorithms.

In Sect. assessing hardware reliability for complex, fault-tolerant systems with
built-in redundancy is done, among other approaches, with Markov chains. Markov
chains also permit to model systems that work if m or less out of n components
have failed (with identical or distinct components as well as same or different fail-
ure/repair rates), and provide algorithms to compute the steady state probabilities of the
parametrised Markov chains.

On the other hand, Markov chains can be used for modeling software reliability,
especially for component-based systems (cf. Sect. [[0.4). This approach is particularily
suitable for reliability prediction during the design phase, even before a "black box"
models of real components or software systems become available.

Markov models serve as the foundation for Markov Reward Models (MRMSs), which
are used in Sect.24.2lto measure the effects of a system’s performance degradation. This
is done in a larger context of performability, i.e. the combination of performance and
reliability and allows to reward the system for the time spent in states that representing
readiness of the system.

Part 11

Reliability Metrics

9 Hardware Reliability

Irene Eusgeldl, Bernhard Fechner?, Felix Salfner®, Max Walter?, Philipp Limbourgﬁ,
and Lijun Zhang®

! Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
2 University of Hagen, Germany
3 Humboldt University Berlin, Germany
4 Technische Universitit Miinchen, Germany
® Saarland University, Germany
6 University of Duisburg-Essen, Germany

Reliability is an important part of dependability. This chapter aims at supporting readers
in the usage of the classical definitions, modelling and measures of (hardware) reliabil-
ity metrics.

9.1 Introduction

In the IT field the term “fault tolerance” is often widely used as “reliability improve-
ment”. The question to be clarified is the relationship between reliability and fault toler-
ance. In a general sense reliability will be understood as ability of a component/system
to function correctly over a specified period of time, mostly under predefined condi-
tions. Fault tolerance is defined as the ability of the system to continue operation in the
event of a failure. Fault tolerance means that a computer system or component is de-
signed such that, in case a component fails, a backup component or backup procedure
can immediately take its place with no loss of functionality. Reliability can be improved
through fault tolerance. Metrics of “classical” reliability theory are well known and nu-
merous. Metrics of fault tolerance are less common, e.g. number of tolerated faults,
number of checkpoints, reconfiguration time, etc.

The most important method supporting fault tolerance/reliability is redundancy. Re-
dundancy is duplication of components or repetition of operations to provide alterna-
tive functional channels in case of failure. Redundancy can be implemented in different
ways: structural (hot and standby redundancy), temporal, functional, etc. Application
of redundancy is always connected with an increase in cost and/or complexity as well
as sometimes with synchronisation problems.

Predicting the system reliability by modelling during the design phase, and mea-
suring the parameters of a real system are two completely different approaches. This
chapter is sub-divided into five sections depending on the primary goal of the readers.
The sections of this chapter are presented as set of references structured according to
the various reliability metrics (RM).

An index is provided at the end of the book so that specific issues can be referenced
directly.

The chapter is organised as follows:

— Sect deals with the motivation on the application of reliability metrics. The
reader should be able to define the reliability problem he/she is interested in.

I. Eusgeld, F.C. Freiling, and R. Reussner (Eds.): Dependability Metrics, LNCS 4909, pp. 59 2008.
(© Springer-Verlag Berlin Heidelberg 2008

60 I. Eusgeld et al.

Depending on the goals the reliability measures will be chosen. In Sect. [0 2] the fol-
lowing problems are discussed: detecting design weaknesses and component fail-
ures that are critical to the proper functioning of a system, support in decision mak-
ing in the case of alternative designs and implementations. Design modifications
for an improvement of the system reliability are suggested. The readers interested
in safety aspects as well as the readers interested in lifetime tests will find useful
information in terms of RM in this section. Depending on the problem to be solved
appropriate metrics are proposed which allow for an effective solution.

— Sect. introduces definitions of terms to be used in the context of RM. Such
widely used reliability metrics like availability, MTTR, MTTF, failure rate, repair
rate, and more, are defined and basic formulas of Reliability Theory are given. The
readers get also proposals when and how to use different distribution functions.

The terms reliability and availability are of special interest: the reader should be
aware of both aspects, namely the qualitative and quantitative viewpoint. A quali-
tative definition of reliability is already given (see Sect.[0.2). As a metric reliability
is the probability R(¢) that no failure will have occurred over a specified period of
time. Accordingly, availability can be defined from the qualitative point of view as
ability of the component/system to be in the operating state when required for use.
From the quantitative point of view availability is a probability A(¢) of finding the
component/ system in an operational state at an arbitrary point in time. Some well-
known types of availability are steady-state and time-dependent availability. Others
are known as e.g. mission availability, overall availability etc. At the end of this
section we discuss the logical characterisation of the estimation of availabilities.

- Sect. gives an overview of necessary data to be collected for an estimation
of RM. There are different ways to obtain data. The most helpful approach is to
gather field data, including the measurement of real failure and repair time during
operation.

Tests as wells as life time experiments allow for failure rate evaluation. The
readers should be aware of the problem coming along with such experiments: data
portability, real world conditions and so on. A physical model using empirical for-
mulas can be applied, if the system structure is known. Another way to obtain
missing data is expert judgement.

— Sect. presents worthwhile methods to model a reliable system. In addition to
state space methods like Markovian Chains, Stochastic Petri Nets and Stochas-
tic Process Algebra, also structural models like Reliability Block Diagrams, Fault
Trees and Reliability Graphs are described. In addition some special cases like
inter-component dependencies, degraded states, failures with common causes, fail-
ures propagation etc., are considered. Necessary component data are specified.

In Sect. the reader will be advised which model seems to be most suitable
for his/her goals. Besides models this section introduces modelling support tools for
solving practical reliability problems, including simulation-based tools and hybrid
tools.

Assessment of the suitability of particular approaches is based on the research expe-
rience of the authors of proposals.

Hardware Reliability 61

9.2 Objectives for Quantitative Evaluation: Why Do I Measure ?

The question imposed by the heading may not be answered entirely in this section.
Reliability metrics may be used for an infinite number of different goals and questions.
Yet this section tries to figure out the most common reasons.

Dependability metrics have gained a lot of importance in the technical practice. Cur-
rent technical standards, such as the CENELEC EN 50126 / IEC 62278/79/80 ,
233, [234] demand systematic “RAMS management” for rail systems starting with the
specification of bounds on dependability metrics. “RAMS”, a common abbreviation in
technical reliability assessment is the abbreviation of “Reliability, Availability, Main-
tainability and Safety” and shows which goals are considered as important. While the
first three may be primal contractual provisions, the fourth decides if the system may
go on line at all.

Quite often, independent assessors such as the TUV (Germany) or DNV (Norway)
must be convinced that the specified requirements are fulfilled. Only after this step is
passed, the authorities may approve the system operation (see e.g. Lovric]).

IEC 62308] gives a broad overview of reasons for reliability prediction and re-
liability measurement. The listed methods may be grouped into four more or less fuzzy
categories (see Fig. [I). System reliability modelling, higher-level modelling, require-
ment checking and actions.

System reliability modelling is the inclusion of the model output into another relia-
bility model: We would like to assess the reliability of a higher-level system and thus
need to assess the component reliability. System reliability predictions may be found
in Sect. Figure [lists e.g. Reliability Block Diagrams, Fault trees and availability
models.

System modelling is a special case of the more general view of hierarchical mod-
elling. Many other higher-level models may consider system reliability. Examples are
e.g. Risk models, which model functions combining critical system failures together
with their consequences (e.g. life loss) or Cost models (e.g. Life Cycle costs, LCC).

Of course, the first two groups are only means to the end (see chapter[@). The third
group are evaluation purposes. Results may either be used to validate/verify that inter-
nal or external acceptance criteria are fulfilled. Or results may be used to find weak
points and flaws in the design without formal requirements. Questions according to the
GQM paradigm may e.g. be: Where are weak design points? Can the targeted MTTF
be reached?

The fourth and final group are actions, which need reliability information as inputs.
We have to consider a choice between different alternatives regarding several objec-
tives, while at least one of them is the reliability of the system. This may contain the
generation of maintenance or test plans, system redesign or calculation of an optimal
number of spares. Most of this decision-making problems include another dimension,
namely cost. If the number of alternatives is large, then the term “optimisation” is used.
A popular branch in reliability engineering is the formulation and solution of such op-
timization problems. Perhaps the most important decision-making problems presented
in literature are:

— Design of the system: How shall I build my system? Example: Where shall I put
redundancy? [Eé, 337]

62 I. Eusgeld et al.

— Component selection: There is a set of different possible parts for each compo-
nent of the system: What is the optimal combination? Which components must be
improved? [@

— Maintenance OptlleatIOI’l. What is the best maintenance schedule to achieve high
reliability with low cost? [141, 291, 339]

— Optimising the test programme: Which components shall be tested more intensive
to guarantee high reliability (fulfil the requirements) with least effort.

RCM

Spare Fault tree
R&M analysis
programme Reliability
plan I
) block diagram
Compliance Actions System reliability Oriented
test plan % models @ graph

Reliability
assessment
Checking against Higher-level
requirements ;: :; models

Customer)
requirement Risk

Availability analysis

modelling

Status design
review

LCC Cost benefit

analysis

Technical

design review Safety

assessment

Fig. 1. Methods requiring a reliability assessment as input

Kochs and Petersen] describe a more detailed view on the reliability assessment
process, which integrates assessment, decision-making and other factors to a cyclic
model (Fig.[2). Thus, the dynamic aspect of changing models, data and goals is taken
care of. Starting with the definition of preconditions, the core process consists of the
modelling, calculation and assessment phase (review and utilisation of the results). In-
cluded into the modelling process is the environment of the system under considera-
tion, which can not only influence the system itself, but also the modelling process (e.g.
boundary conditions and acceptance values).

Another viewpoint of reliability modelling can be found in the British DEF Stan 00-
42 [354]. In this document, reasons for reliability prediction in the product development
process are treated. The statement is that the main reason for reliability modelling is
the validation of the system according to acceptance criteria. This is defined as R&M
(reliability and maintainability) case.

Definition 1 (R&M case [@]). A reasoned, auditable argument created to support
the contention that a defined system will satisfy the R&M requirements.

Hardware Reliability 63

.
o

® analysis and specification of the unit to be - .

- investigated (e.g. subassembly, device, L deﬁlgqlfor
% card, element) and its environment : reliability
o

c

3

domain experts

R —
S

reﬁ'\f\em . - y
analysis of the influencing factors
. » technological .
unit * human —machine interaction
@ * operational
t « internal
o time « external . »
3 period « regulations by technical communities
> « regulations by public communities
= @ regulations by insurances
@ g require regulations by laws
N ments | Lt e
5 5 amEn Summn amjEm
3 § 2
& s & - 5 z
° i il D S c c P
? criteria £) & 5 o= . YES
= £ E c =
2 o] o 55 CE n
o o =] w32
£ g 2 0 E -
o 2EQ []
acceptance] £
P ! t D) °\ © 5
refinements T £EQ
£E
52
e

Fig. 2. Reliability framework [281]

All reliability models (simple, complex, qualitative, quantitative) thus may be consid-
ered as a “reasoned, auditable arguments” because they measure the reliability which
can be compared to any threshold. As can be seen by this definition, reliability mod-
elling has the purpose to demonstrate something: The ability of a system to match the re-
liability requirements given all evidence. This can be interpreted as the risk assessment
perspective, as the risk of not achieving the reliability targets is measured. The most
notable point of their position is the dynamic view of reliability prediction. Together
with the R&M case comes the term “body of evidence”, an entity which includes all
necessary information and can be considered as both information about the input data
and the model. This body of evidence is growing and shrinking over time (Fig.[3). We
have to be aware that reliability models and accuracy grow over project time and sys-
tem models may changes. Reliability growth analyses are examples of such dynamic
techniques.

A similar approach has gained importance in the area of functional safety. As it is
commonly known today, there is no absolute technical safety and each safety level may
be improved a little more (with a corresponding effort). This raises the question which
safety limit is adequate to be fulfilled by the manufacturer. The popular IEC 61508
] describes a risk-based approach to safety. Starting with hazard and risk analyses
it is estimated how much effort has to be taken to reduce the risk to an acceptable level.
This is quite a critical aspect, because it requires the definition of an “acceptable risk
level”.

64 I. Eusgeld et al.

— New Development Solution

Modified COTS Solution

-------- Re-design Increases Risk

R&M

R \
Risks k) = === Mid-Life Improvement
\

(technology insertion)
Increases Risk

ST

plateau (awaiting
further evidence)

EVIDENCE INCREASING
RISKS REDUCING
» Time Into
: v ¢ d s Project
Bid Project Acceptance Entry Into Mid-Life
Stage Start Service Improvement

Fig. 3. Evidence in a reliability project [@]

Exemplary risks that may be analysed in this stage are:

— Railway: The train conductor is unobservant or suffers from a medical emergency.
As a consequence, signals are ignored and collisions or derailings may occur.

— Automobile: The steering mechanism fails and a collision with oncoming traffic
may occur.

Here, dependability metrics come into action. What is the reliability of a train conduc-
tor? What is the expected reliability of a system using a certain technology? How likely
is the prevention / avoidance of a harmful event. In this stage, statistics and experiences
from similar systems are utilised to estimate these parameters (see e.g. of Transportation
]). The risk may e.g. be expressed in F'/n curves (for examples of risk assessment
and risk acceptance criteria see Lovric ,]).

Based on an acceptable risk threshold the maximal risk contributed by each subsys-
tem can be assessed. According to IEC 61508 one out of four “Safety Integrity Levels”
(SIL) may be assigned. From SIL 1 (low risk) to SIL 4 (very high risk). The SIL de-
fines which actions against random (hardware) and systematic failures have to be taken.
To prevent the later, quality assurance measures are used. The possibility of the quan-
tification of systematic failures is controversial and most often not required (but see
Authority [@]). For preventing random faults, it is not sufficient to implement quality
assurance or fault-tolerance measures. A quantitative demonstration that the require-
ments are fulfilled is necessary. Such quantitative assessments are done using the meth-
ods in Sect. and Lovric]. In this stage, experimental measures such as fault
injection (Sect. and]) are utilised to validate the fault tolerance concept.

Many sectoral adaptions of the IEC 61508 have emerged or will emerge in the near
future. For the automotive industry, this will be the ISO 26262 M]. Other variants are

24,1167, [168, 420].

Hardware Reliability 65

Quantitative reliability assessment of electronic components are since long state-of-
the-art, supported by widely accepted standards and tools ,]. These allow the
prediction of reliability without actual field data. Being subsequently updated, they are
much nearer to the “truth” than ancient “notorious” standards such as DoD [Iﬁ].

In mechanics and hydraulics, this successful strategy has started to become increas-
ingly popular and quantitative standards supersede the old “qualitative” philosophy as
in fiir Normung e.V].

Based on these predictions, failure modes may be quantified to predict safety metrics
such as Safe Failure Fraction (SFF), Diagnostics Coverage (DC), Probability of (dan-
gerous) Failure on Demand (PFD) and Probability of (dangerous) Failures per Hour
(PFH).

9.3 Common Measures and Metrics: What Do I Measure?

We will first review very briefly terms to be used in the context of Reliability Metrics.
Subsequently we will introduce a particular class of distribution functions. We assume
that the readers are familiar with probability theory (theory of random events)].

In the context of reliability metrics we are generally interested in nonnegative con-
tinuous random variables, in particular T" (typically lifetime of the component). Then
F'(t) is called the distribution function of T" and is the probability that the component
has failed with in time interval [0, ¢] . From the point of view of reliability theory, F'(¢)
is the unreliability (probability of failure) and is the complement of the reliability R(¢)
(the definition of reliability see Sect.[0.1)).

Its derivative f(t) = dF(t)/dt is called the failure density function of ¢, which has
the following properties:

[swa=1. Fi = [s, "
The expectation value or mean of a random variable 7" is defined by
B(T) = /OOO LE(E) dt
and is called mean lifetime. When R(t) is known, E(T') can be calculated as follows:
E(T) = /OOO R(t) dt

The Failure rate (denoted by A, also called hazard rate) can be estimated when R(t)
and f(t) are known by

66 I. Eusgeld et al.

The failure rate can be interpreted as the conditional probability of a failure between
t and At (with probability f(t)At) conditioned on the probability of surviving the first ¢
units of time. The most simplified interpretation of A(¢) is a mean frequency of failures.

The most simplified interpretation of the repair rate 1(t) is a mean frequency of
repairs (renewal). The repair rate can be estimated analog to failure rate.

Assuming that A(¢) is given, the reliability can be estimated from the equation

1
ejof Az) dz

R(t) =

Conditional reliability R(t|t1) is the probability of surviving ¢ > ¢; units of time,
under the condition that the component has already survived ¢; time units:

_ R _ 1
R(t|tl) - R(tl) - efttl)\(I) d

Some Continuous Distribution Functions

We now define some commonly used distribution functions. The most commonly used
distribution function is the exponential distribution.

Exponential distribution: Parameter A\, A > 0
Failure density function:

F(t) = e
Reliability:
R(t) =e ™
Mean lifetime: 1
E fd
A
Failure rate (constant):
At) = A

Depending on the goals of the modelling, one of the following functions can be
chosen.

Weibull distribution: Parameters o, 5, > 0,3 > 0.

The Weibull distribution can approximate a normal distribution (3 ~ 3.44) and an
exponential distribution (3 = 1).

Failure density function:

fity = Pypm1-iv?
«a
Reliability:
_ 148

R(t)=¢€ =
Mean lifetime:
E = aéF(! +1)
B

Some I’ values:

Hardware Reliability

BI(5+1) BI(5+1) BI(5+1)
0.5 2.000 2.0 0.886 3.50.940
1.0 1.000 2.5 0.887 4.0 0.906
1.5 0.903 3.0 0.893 450913
Failure rate: 3
At) = "1
="
Normal distribution: Parameters p, o, > 0,0 > 0.
Failure density function:
1 —(t—p)?
t) = e 202
= Jon
Reliability:
R(t) /OO Lo ey
= 20
¢ oV2m
Using x = t;“:
x R(t) x R(t) x R(t)
0.00 0.5000 0.75 0.2266 2.00 0.0228
0.25 0.4013 1.00 0.1587 2.50 0.0062
0.50 0.3085 1.50 0.0668 3.00 0.0014
Mean lifetime:
E=yu
Failure rate: 1)
At
(t) R(t)

Rectangle (uniform) distribution: Parameters a,b,0 < a < b.
The following formulas are applicable only in case t € [a, b].
Failure density function (constant):

1
t pu—
o=,
Reliability:
b—t
R(t) =
0=, .
Mean lifetime: b
o a+
2
Failure rate:)
Alt) =

67

68 I. Eusgeld et al.

2(t)
A

Time of Time of
infant fqilures y wear-out failures

h
Useful time

Fig. 4. Typical electronic component failure rate as a function of time (age)

The reader interested in learning more on distribution functions can be referred
to [@, @,].

We summarize some assessments on the suitability of particular distribution func-
tions:

An exponential distribution can be applied when the failure rate is constant. Assump-
tion: The component does not age. This distribution describes the component behaviour
in the useful stage of lifetime (the middle phase of the “bath-tub curve”, which describes
the graph of the behaviour of the failure rate as a function of time (see Fig.[H).

When the failure rate is monotone decreasing (the first phase of the “bath-tub curve”),
a Weibull distribution with 8 < 1 can be assumed. A Weibull distribution with § > 1
describes a monotone increasing failure rate (the last phase of the “bath-tub curve”).
This distribution is also suitable for the modelling of repair time.

A Normal distribution can be recommended as well for lifetime modelling as for
repair time modelling.

A rectangle distribution describes the wear-out process in the last phase of the “bath
curve”.

The choice of the distribution function is based on the field or test data (cf. Sect.[9.4),
if available.

MTTF and MTTR

For calculating the steady-state availability two important reliability metrics must be
also defined:

Hardware Reliability 69

MTTF: For non repairable systems, the mean time to failure, abbreviated as MTTF, is
the same as the mean lifetime. For repairable systems, MTTF can be thought of as the
average time between a renewal point and the next following failure point. Particularly,
if we assume that after each repair, the system is as good as new, i.e., with the same
failure rate as before, then, for the random variable 7', MTTF is equal to the mean
lifetime:

MTTF = / R(t) dt
0

MTTR: The mean time to repair, abbreviated as MTTR, is the mean of the repair time of
a system. Let 7 denote the positive random variable for the repair time with distribution
function G(t) and density function ¢(¢). The MTTR can be derived as follows:

MTTR = / xg(x dm—/ /) dtdx
/ / 2) dadt = /0 (1—G(1)) dt

Instantaneous Availability: 'We assume familiarity with the renewal density function of
repairable systems [58, pages 413-415]. We let d (t) denote the renewal density function
of the component at time ¢ which can be calculated from the failure density function
f(t). Intuitively, for small h, d(t)h denote the probability that a repair or a restore
occurred in (¢, + h].

The instantaneous availability (or point availability) [@, @] A(t) of a component
is defined as the probability of finding it operating at time ¢. Considering that the com-
ponent is new at ¢t = 0, then:

Availability

A(t) = P{ component is up at ¢ | component is new att = 0}

It can be computed using the following equation:

A(t) = R(t) —|—/O R(t — z)d(z) dz

The first term is the probability that the component has not failed from the beginning.
In the second term, d(z)dx is the probability that the last repair occurred in time (x, x +
dx], and R(t — x) guarantees that no further failure occurs in (z, t]. Note that these two
events are mutual exclusive.

Steady-state Availability: Quite often we are interested in the equilibrium behaviour of
the system. For this purpose we define the steady-state availability (or limiting avail-
ability) A as the limiting value of A(t) as ¢ approaches oo. This measure is usually
nonzero in contrast with the limiting reliability which is always zero. For systems pro-
vided MTTF and MTTR, A calculates to [lﬁﬂ'

MTTF
MTTF+ MTTR

70 I. Eusgeld et al.

If we assume that we have a constant failure rate A and repair rate p (exponential
distribution), we get MTTF = /1\ and MTTR = i respectively. Hence, A = /\iu‘
Interval Availability: If we are interested in the expected fraction of time the component
is up in a given interval I = [ty, 2], we can use the interval availability (or average
availability), which is defined by:

Af(t) = /tQ A(z) dx

1

Joint availability: Assume that ¢,t' > 0 and ¢ # ¢'. The joint availability A(t,t) of
a component asserts the probability that the component is up at time point ¢ and ¢'.
Formally,

A(t,t") = P(component is up at ¢ and at ¢’ | component is new at 0)

Without loss of generality, we assume that ¢ < t’. If the failure rate is constant, the two
events “component is up at time ¢” and “component is up at time ¢'”* are independent,

and thus,
At t) = ADAWH —t)

Note that in addition to the above availabilities, there are several other kinds of avail-
ability measures like Mission Availability or Workmission Availability [@].

We can divide the systems into repairable and non repairable parts 61)]. If a system
is non repairable, it is not accessible after a single failure. On the contrary, if a system
is repairable, it is continuously available for repair in case of failures.

For non repairable systems, the instantaneous availability reduces to the reliability.
The steady-state availability is equal to zero, since we can assume M T"T' R to be infinity.
For repairable systems, to simplify the calculation of point availability, one assumes
usually that the repaired part is as good as new after repair. This assumption is valid if
we have constant failure rates. For more details, we refer to [@].

On the logical characterisation of the availability: If the failure rate and the repair
rate are constant, Markov process theories can be applied to analyse measures of in-
terests, including availabilities. Provided the Markov process for the systems, one can
specify some measure constraints of interests using the continuous-time stochastic logic
(CSL) [@, ,]. Those properties can be verified automatically against the model,
using the model checking techniques. Now we briefly review the definitions of contin-
uous time Markov chains (CTMCs), the logic CSL, and how to specify properties, like
availability measures, using CSL over CTMCs. For more detail, we refer to [33].

Let AP be a fixed, finite set of atomic propositions. We consider a CTMC (cf. Sect.
[8) as a finite transition system (S, R, L) where S is a set of states, R: S x S — R is
the rate matrix and L : S — 247 is the labelling function which assigns every state s a
set of labels L(s) which are valid in s.

For example, we consider the CTMC of the 2-out-of-3:G-system presented in Figure
(the same as the one in Figure [[2] of subsection 0.3). The set of states S is given by
{0,1,2,3}. The rate matrix R is depicted on the edges, for example, R(0,1) = 3A. In

Hardware Reliability 71

3L 2\ A

° 1) c 2u 3u e

Fig. 5. Markov chain of the 2-out-of-3:G-system

state ¢ € .S, i components of the system are failed. Let the atomic propositions up and
down denote that the system works or not respectively. Then, L(0) = L(1) = {up},
i.e., the states 0 and 1 satisfy the atomic proposition up. Similarly, L(2) = L(3) =
{down}, i.e., the states 2 and 3 satisfy the atomic proposition down.

If R(s,s") > 0fors,s €9, the transition from s to s’ is enabled with probability
1 — e~ with the next ¢ time units provided that the system is in state s. If R(s,s’) > 0
for more than one state s, a race between all of the outgoing transitions exists. More
precisely, the probability that the transition from s to s’ is taken before time ¢ is given

by 55 (1 — e Bt) where B(s) = 6 R(s,).

Given a sequence of states s; € S of a CTMC and time points ¢; > 0 fori > 0, let o
denote a path s, to, 1,1, ... with R(s;, s;+1) > 0 for all i > 0 in the CTMC, which
indicates that the CTMC starts at state sg, spends there ¢(time unit, and transits to state
51, then spends there ¢; time unit etc. We use @t to denote the state in path ¢ at time
t. Formally, it denotes the state s; where ¢ is the smallest index such that ¢t < 22:1 t;.
(Note that we consider here only infinite paths but the definition of 0@t can be easily
extended for finite paths.) Let Iy, 1, . . . denote nonempty intervals on the nonnegative
real line, and let C(sg, Io, ..., Sk—1, Ix—1, si) denote the cylinder set consisting of all
paths

{J:SO,to,Sl,tl...,Sk,... ‘ t; € 1; fOl‘i:O,l,...k}

The cylinder sets induce the unique probability measure Pr on the set of paths, de-
fined by: Pr(C(s¢)) = 1, and for k > 0:

Pr(C(so, Lo, -, 8k, Ig, 8")) =Pr(C(so, Lo, - .., Sk))

R(sp,s') (e—E(sk).a _ e—E(sk)-b>
E(Sk)

where a = inf I, and b = sup .

CSL is a branching-time temporal logic which extends CTL (143 (Computational
Tree Logic) with two probabilistic operators that refer to the steady state (S) and tran-
sient behaviour (P) of the system. The steady-state operator provides the probability of
being in a state in equilibrium, whereas the transient operator gives the probability of
the occurrence of set of paths in the CTMCs. The syntax of CSL formulas over the set
of atomic propositions AP is is defined by:

state formulas: P:=qa|-D|DPVD|S>p(P) | P>p(d)
path formulas: ¢:=X'o| U D

where a € AP, p € [0,1] and I is an interval on the positive real line. The operator >
can be replaced by other compare operators.

72 I. Eusgeld et al.

The state formulas are interpreted over the states of a CTMC, and the path formulas
are interpreted over paths of a CTMC. Similar to CTL, the atomic propositions are state
formulas, the negation of a state formula is a state formula, and the disjunction of two
state formulas is again a state formula. As the conjunction can be expressed by the
negation and disjunction, i.e., @1 A $o = —=(—P1 V —P5), the conjunction of two state
formulas is also a state formula.

The state s € S satisfies the atomic proposition a if a € L(s), satisfies the formula
—® if s not satisfies @. s satisfies the disjunction @1 V @, if it satisfies @1 or Po. The
state formula S, () is true in a state s if the sum of the equilibrium probability to be
in P-states meets the bound > p. More precisely, s satisfies S>,(®) if the following
holds:

tlirgo Pr{c | 0@t € Sat(®)} > p

where Sat(®) is the set of states satisfying ¢ which can be calculated recursively. If we
categorise the states into up and down states, i.e, AP = {up, down}, the steady-state
availability can be simply expressed by S>,(up). We note here that a CSL formula
expresses a measure constraint, not the measure itself.

The state formula P>, (¢) is satisfied by the state s if Pr{o | o satisfies ¢} >
p, i.e., the probability measure of the set of paths satisfying the path formula ¢ is
greater equal than p. The interval I can be considered as a time interval. The path
o = s0,t0, 51,11, ... satisfies the next path formula X if the first transition (s, s1)
occurs at time point inside I, i.e. tg € I, and the second state (s;) satisfies . The path
o satisfies the until path formula @U' W if there exists t € I such that c@Qt satisfies
W and for all 0 < t/ < t, c@Qt’ satisfies @. The usual eventually and henceforth path
formulas can be extended by /@ = trueld!® and 07 = — o! —@ respectively. Using
the eventually path formula, the instantaneous availability at time ¢ can be expressed by
P>, (obup) where I = [t,] in this case. The time interval [t, ¢] is restricted to a point
t, which indicates that a up state is reached at time ¢, what happened earlier is of no
importance.

To express the interval availability, we need the henceforth operator. Let 0 < ¢; < to,
the formula P, (0"-*2lyp) indicates that for all time points in ¢ € [ty, 5], the system
must be in a up state. Hence, this formula corresponds the interval availability.

The conditional instantaneous availability at time t is simply P>, (®U*Hup), where
& is a state formula. I/ is the usual until operator which indicates that ¢ shall be always
true before time ¢. A path in the CTMC satisfies the path formula U up if it is in a
up state at time ¢, and all time point before ¢ @ is satisfied.

Using nested P and S operators more complicated properties can be expressed. The
property Ss, (P, (O #2lup)) is the steady-state interval availability, which is true in
those states such that in the equilibrium with probability at least p, the probability that
the system is available in the time interval [t1,to] is at least p'.

With the logic CSL, we are not able to express properties related to joint availability.
Since for that we need to take the conjunction of two path formulas of the form olt:tlup
and ol Tup. But ot yp Aot #lyp is not a valid path formula because of the definition
of CSL path formulas.

If the availability properties can be specified using CSL formulas, the model check-
ing algorithm 130, 33] can be applied to verify these properties automatically.

Hardware Reliability 73

9.4 Techniques for Measurement: What Data Is Necessary?

Field Data

To gather field data is a very difficult task, since it is collected by observing parts failing
while operating. If a part is well designed, dependent on the fault rate, it is likely to have
a long life time. This leads to a long time for failures to occur and thus any useful infor-
mation concerning part reliability. Therefore, there are relatively few field-data sources.
The economic requirements of an industry affect prediction models, and consequently
the reported field data for several reasons:

— There are few customers who need a generic field data source and the collection of
field data is costly.

— Since the error prediction models look for different corrective factors (such as com-
ponent placement), the gathered field data will focus on those factors and ignore
others.

The EPRD (Electronic Parts Reliability Data)] and NPRD (Non-Electronic
Parts Reliability Data) [407] offer a wide and very detailed variety of field data for elec-
trical and mechanical parts. NPRD-95 and [@] are data collections of non-electronic
part reliability data. The EPRD-97 is unclear concerning the time interval on a part-by-
part basis. The engineers are encouraged to use the in-depth data whenever possible,
instead of using the average values. Error prediction rates are intended as a complement
for a safety minded design, not as a substitute.

VZAP95 [408] contains electrostatic discharge (ESD) susceptibility data for 22,000
devices, including microcircuits, discrete semiconductors and resistors. A detailed sec-
tion contains the commercial part number, device description, manufacturer, ESD clas-
sification (per MIL-STD-1686C [124] and MIL-STD-883F method 3015.7 [131]]), date
code, data source information, resistance and capacitance used in the discharge circuit,
failure voltage, pin combination, failure criteria, and the version of method 3015 used.
An interpretation of data and profiles of susceptibility levels for numerous device types
and technologies is included.

The IAEA-TECDOC-508] offers a survey of ranges of component reliability
data to use in probabilistic safety assessment. It contains failure rates and availability
data for several hundred different types of non-electronic components. Among the com-
ponent groups are battery, bus, diesel generator, inverter, motor, pump, rectifier, relay,
switch, transformer, transmitter and valve.

The Offshore REliability DAtabase (OREDA)] is a project organization spon-
sored by several international oil companies. Reliability data is collected by the partic-
ipating companies. OREDA has established a comprehensive database with reliability
and maintenance data for exploration and production equipment from a wide variety
of geographic areas, installations, equipment types and operating conditions. Offshore
sub-sea and topside equipment are primarily covered, but onshore equipment is also
included.

74 I. Eusgeld et al.

Physical Models

Error prediction models provide average system lifetime estimations and serve as a
starting point for determining an expected (realistic) lifespan of a system. As described
in the previous section, error prediction needs field data on failure rates. Prediction
models depend on this data for several reasons:

— Prediction formulae are derived from field data and rely on observed lifetime data.
Without some idea of the natural lifespans of the components, estimating their life-
time is meaningless.

— Engineers building new components based on components with known failure rates
use existing field data in conjunction with their derived prediction models to make
an estimate.

As the collection of field, prediction models are usually driven by the concerns of an
industry. Safety standards used by the military are not necessarily appropriate for other
industries, where models of use and the consequences of failure are radically different.
E.g. military or aerospace applications stress reliability over long periods (months or
years), while automotive reliability is based on an estimate of 400 hours of use per year.
Thus, most data sources have some bias. Although the individual formulae describing
the failure rate are quite different among the various reliability analysis handbooks, they
have several aspects in common. One of the most characteristic parts of many models
is the relation between effective device temperature and failure rate. These models use
thermal stresses in a form related to the Arrhenius Law

k= Ae~Fact/RT

which describes the temperature dependence from the reaction speed constant k. The
fraction of collisions with proper orientation is represented by A. The fraction of colli-
sions produced with activation energy in J/mol E,; is represented by

e—Eact/RT.

R = 8.314J/mol K is the gas constant, and T is the temperature in Kelvin. Activation
energies used in this expression are often very different for similar components. Most
other influence factors are modeled in the form of acceleration factors. The acceleration
factors are often presented in the form of tables divided in classes. These classification
tables are mostly based on practical experience and do not use an underlying physical
model. The majority of the acceleration factors is either related to the effective device
temperature, the device structure or is environment bound.

To be able to directly calculate and predict the reliability of a system, field data has
been integrated in some of the following handbooks.

MIL-HDBK-217 J: The basis for error prediction models is the MIL-HDBK-217,
listing various error prediction models for different systems. It is being developed since
the late 1940’s and periodically updated since. The handbook contains two basic meth-
ods of reliability prediction:

Hardware Reliability 75

1. Part Count Analysis (PCA) and
2. Part Stress Analysis (PSA).

PCA only requires part quantities, quality levels, estimated values and the application
environment, making it less accurate but more useful during the early development
phase. The overall reliability is given by

A= zn: Nﬁ\ﬂl’@i

i=1

where n is the number of part categories, V; is the quantity of the ¢-th part, \; is the
failure rate of the i-th part and @); is the quality factor for the i-th part. If the equipment
consists of parts operating in more than one environment, the equation is applied to
each portion of the equipment that is operating in a distinct environment. The sum of
the failure rates of all environments represents the overall equipment failure rate.

PSA requires greater amount of information (calculated or measured values) and
is used later in the development phase. A failure rate formula is computed by A, =
AyTemy..., where A, is the part failure rate, A\, the base failure rate which is dependent
on temperature and applied stress. m.m,... are acceleration factors for the intended
environmental conditions (7.), the quality acceleration factor (7,) and other parameters
that will affect the part reliability. Other acceleration factors are modeled in terms of
acceleration factors 7. The data used to model acceleration factors is mostly obtained
from the manufacturer and field data. Using this method, it is possible to model the
effects of using a component under certain environmental conditions and the effect of
using certain methods of component quality screening, etc.

New models have been developed by using the MIL-217 formulae, usually by ap-
plying the same form but introducing new correction factors. As close derivations to
the MIL-217, CHINA299B based on GJB/z 299B, developed for the Chinese military,

[@], [@],] and [IE] can be mentioned.

The SAE-Model [53]: The SAE-Model is a reliability prediction model from the Soci-
ety of Automotive Engineers (SAE). It is the standard prediction model for the automo-
tive industry, based on equations similar to those in MIL-217 and provides insights into
why the SAE would need a model distinct from the MIL-217 specification. The main

difference is semantic: the modifying factors for a part are based on issues specific to
b
the automotive industry. The failure rate can be calculated with A, = X\, [] m;, where
i=1
Ap is the predicted failure rate, A\, is the base failure rate for the component, and 7;
are various modifying factors, such as component composition, ambient temperature
and location in the vehicle. In] the model developed by [@] was reformulated and

refined with the help of additional empirical evidence.

Telcordia SR-332 [463]/Belicore: The Telcordia standard TR-332/SR-332 was devel-
oped by Telcordia Technologies Inc. It originated from the Bellcore standard
developed by AT&T Bell Laboratories. Bell Labs modified the MIL-HDBK-217 equa-
tions to better fit their field, focusing on equipment for the telecommunications industry.

76 I. Eusgeld et al.

The most recent version of the SR-332 is issue 1, published May 2001. The second is-
sue is available since March 2006. The basis of the Telcordia math models for devices is
referred to as Black Box Technique. This parts count method defines the black box (BB)
steady-state failure rate App = A\gmqm,m, for different device types, where), is the
generic steady-state failure rate for the particular device, 7, the quality, 7, the electri-
cal stress and 7, the temperature factor. The inputs contained in the Telcordia standard
were obtained from statistical data collected over several years. For environments where
temperature and electrical stress are unknown, Telcordia recommends using a value of
1 for 74 and 74, assuming the electrical stress to be at 50% of the rated value and the
temperature to be 40° C. The steady-state device failure rate, Agg, considers an adjust-
ment to the black box failure rate depending upon the availability of laboratory and field
data and device burn-in. For the simplest case where no data is available, it is assumed
that Ass = App. In the Telcordia standard, the parts count steady-state failure rate for
units is

n
Apc = »_ Nidss,
i=1
where \gg; is the steady-state device failure rate of device ¢, 7, the environmental fac-
tor, IV; the quantity of device type ¢ and n the number of device types in the unit. For the
simplest case where no data is available, it is assumed that A\gs = Apc. The system-

M

level failure rate Asy s = > Agsg, is the sum of all failure rates of the units contained
=1

in a system. The first-year Jmultiplier, mry is defined on all levels (device/ unit/ system)

as the ratio of the failure rate in the first year of operation to Ags,. mry can be used to

estimate the failure rate of the concerned items during the infant mortality period. For

devices, the first-year multiplier calculation depends on burn-in time, device stress and

burn-in temperature at device, unit, and system level. First-year multipliers for units and

the system are calculated as weighted averages of the first-year multipliers at device and

unit levels, respectively.

BT-HRD-4 [@ J: The British Telecom Handbook of Reliability Data (BT-HRD-4) con-
tains an approach quite similar to the MIL-HDBK-217. It replaces the term Part Stress
Analysis used in MIL-HDBK-217 by Part Stress Count Analysis. Failure rates are cal-
culated by formulae in the form: A\, = A\ymm 7. , where A, is the part failure rate, A\,
the base failure rate, 7; the thermal acceleration factor, 7, the quality correction fac-
tor and 7, the environmental acceleration factor. For most components)\ is used as a
constant which is independent from external stress. Table [Tl shows the most common
BT-HRD-4 parameters with their meaning, influence factors and origin.

The BT-HRD-4 is less detailed than the MIL-HDBK-217. The MIL handbook cov-
ers a wider range of environmental and application influence factors compared to the
British Telecom handbook covering only equipment for telecommunication purposes.
The next version of the HRD-4, the HRD-5 is based on the former RDF 2000 standard,
CNET 93 [118].

IEC-62380 [1231]/ RDF 2000/ CNET93/ RDF 93: RDF 2000 (UTE C 80-810) is a
French Telecom standard that was developed by the Union Technique de I’Electricité

Hardware Reliability 77

Table 1. BT-HRD-4 Parameter Overview

Param. Description Influence factors Source
All parts

Te Environmental Environment Heuristic
Acceleration
Factor

Tq Quality correction factor Component screening Heuristic

Integrated circuits
b Base failure rate, Device structure Heuristic

depending on
number of bits/gates

Tt Thermal Thermal, device structure Arrhenius,
Acceleration Heuristic
Factor
Discrete semiconductors and passive components
Ab Base failure rate Device structure Heuristic

(UTE). The previous version of RDF 2000 is referred to as CNET 93]. CNET
93 itself was formerly known as RDF 93. It is a more comprehensive model similar
to MIL-HDBK-217, providing a detailed stress analysis. RDF 2000 provides a unique
approach to failure rate predictions without parts count prediction. The IEC 62380 TR
edition 1 (formerly known as UTE C 80-810) is based on RDF 2000. Component failure
is defined in terms of an empirical expression containing a base failure rate multiplied
by factors influenced by mission profiles. It contains thermal behavior and steady-stress
system modeling. The failure rate of the system is determined by summing all compo-
nent failure rates.

Other Models: The IEEE STD 493-1997 (Gold Book)] is the IEEE recommenda-
tion for the design of reliable industrial and commercial power supplies. Data is pro-
vided for commercial power distribution supplies. Another IEEE standard for reliabil-
ity prediciton is IEEE STD 1413-1998 [237] which supports a framework for reliabilit
prediction for electronic systems and equipment. Predictions based on IEC-61709]
are not commonly used since it is internationally classified as parts-count method. It is
only listed for completeness. Mechanical systems pose a special challenge with re-
spect to reliability prediction because such systems have a large unit/device variety are
thus often unique systems. The Handbook of Reliability Prediction Procedures for Me-
chanical Equipment [@], developed by the Naval Surface Warfare Center, contains
reliability models for mechanical devices, e.g. motors, brakes etc.

Acquisition of field data to use with prediction models is difficult due to low failure
rates of reliable systems. Two methods have been developed to accelerate the fault pro-
cess: Environmental stress screening (ESS) and fault-injection experiments. Both can
increase the probability of faults dramatically. Thus, the the amount of failure data can
be increased. On the other hand, both techniques alter the system or its environment,
making the translation of the results back to the original environment a difficult task.

78 I. Eusgeld et al.

Environmental Stress Screening

The reliability of a hardware system strongly depends on the working environment.
Therefore the testing of equipment during design and production will have to take the
environment into account in which the equipment is likely to function. Environmental
stress screening (ESS) can be defined as a process or a series of processes in which
environmental stimuli, such as rapid temperature cycling and random vibration are ap-
plied to electronic items in order to precipitate latent flaws or defects which are likely
to create (intrinsic) infant mortality failures in field use, regarding the intended working
environment. A screen is part of the manufacuring process, basically an added inspec-
tion step. Therefore, all components are subjected to the screen. Reliability screening
increases the production cost for each component off the production line, but it is capa-
ble of producing valuable data for product improvement. The critical factor to control
product reliability is to ensure that products have successfully passed through infancy,
prior to their delivery. To ensure this, every product has to go through the following
procedures and the associated environments:

— Storage: Products often have to be stored before being issued to the customer. The
storage environment has an impact on the reliability of the product and is deter-
mined mainly by temperature, salt fog and humidity for most electronic compo-
nents/products.

— Handling and shipping: The service and transportation environment consists of vi-
bration, shock, bump and acceleration.

— Operating: The intended working environment of the product is mainly determined
by the intended end-use of the product.

Environmental stresses are caused by following sources:

1. Natural: Stress is determined by the general geographic region and local climatic
conditions. In VDI 4005, Fiches 1-5, 1981-1983 different environmental conditions
are discussed with respect to the reliability of technical products.

2. Induced: Stress is created by man either directly or indirectly such as the mechani-
cal stresses experienced during handling and transportation environment.

These environmental stimuli are used to ensure that new products are designed with
generous margins of strength to:

— Improve reliability (MTBF). Most products will never have to endure the harsh
environmental limits during the ESS. These limits help the product to withstand
abuse and can lead to a longer average lifetime under normal conditions.

— Learn about product failure behavior to determine the type of environmental stimuli
which may be used during manufacturing screens.

— Allow higher stress levels during manufacturing screens to substantially reduce the
screening duration.

Higher stress levels can accelerate the duration of an ESS process, but the applied stim-
ulation must not approach the mechanical, electrical, or thermal stress limits of any
component to avoid damaging the component or accelerating the fatigue. Each screen-
ing profile must be adjusted for each module, unit, or assembly.

Hardware Reliability 79

Standards for ESS are the DoD-HDBK-344] from the US Airforce, the Navy
MIL-STD-2164] environmental stress screening process for electronic equipment
and the] for environmental testing. It gives a general guidance and descriptions of
environmental test methods for a range of conditions and is similar to the MIL-STD-810
[130]], replacing BS2011 [74]

The ISO/IEC61163 [228] describes reliability stress screening in three parts regard-
ing component application area:

— Part 1: Repairable items manufactured in lots.
— Part 2: Electronic components.
— Part 3: Reliability screening of repairable single items.

MIL-STD-781 [@] : The purpose of MIL-STD-781 testing is to show that the equip-
ment meets the specified and contractually agreed performance levels within the speci-
fied risk levels. Therefore, the objective is not to induce failures by applying unrealistic
stresses. MIL-STD-781 test plans are based upon the assumption of a constant failure
rate, so MTBF is used as the reliability index. Therefore, MIL-STD-781 tests are ap-
propriate for equipment where a constant failure rate is likely to be encountered, such
as fairly complex electronic equipment, after an initial burn-in period.

A special case of ESS is burn-in, which is the screening of components and assem-
blies at elevated temperatures, under bias, to precipitate defects prior to shipment. If a
burn-in should be performed, the following questions should be answered according to

[258]:

— Which operating and environmental conditions should be used?
— Which duration should be chosen?
— Is it cost-effective? [@]

Most of the existing documentation of integrated circuit burn-in follow the guidelines
by the MIL-STD-883 [|El|] series of documents. For discrete semiconductors the MIL-
STD-750 [@] and MIL-S-19500 are the main references. Practical guidelines
are given by [@]. In contrary to the more classical definition of burn-in, the industry
moved towards a re-assessment of the traditional burn-in approaches, to take corrective
actions so that the costly burn-in tests can be eliminated. Here, burn-in tests consist of
running the system over a more or less long period of time to overcome infant mortality.

Fault Injection

The goal of fault injection is to evoke faults that are as close as possible to faults that
occur in a real environment. This involves two steps: First a fault model has to be defined
that characterizes best the real faults that are to be evoked. The extent to which the fault
model describes real faults is called representativeness. The second step is to set up
technical modifications in order to evoke faults of the fault model. The ability of the
modifications to emulate the fault model is characterized by Fault Emulation Accuracy
Figure[@l visualizes the relationship.

The top level classification of hardware faults is the distinction between permanent
and transient faults. Several injection techniques exist that try to emulate the stuck-at or

80

I. Eusgeld et al.

Technical
Modification

Fault Real
Model Fault
g g

Emulation Accuracy Representativeness

Fig. 6. Typical fault injector architecture

bit-flip fault model as accurate as possible. They can be grouped into two sets where one
generates disturbances on the chip or system level that can lead to faulty pin levels and
the other modifies the state of pins directly. General disturbances can be generated by,
e.g., heavy-ion radiation, power supply disturbance or electromagnetic interferences.

In

general, they are hard to control and a gold unit is needed to check whether the

disturbance lead to a change of a bit.

A gold unit is a reference unit to produce results which are assumed to be correct.

A golden run is the period of time needed to produce the reference results by the gold
unit before the fault-injection run.

Fault injection can be performed in order to achieve several goals (see]):

— Verification and validation. Verification uncovers differences between the specified

and the real function of a system. Validation defines methods to resolve discrepan-
cies between the realized and the system requirements. If a system is designed to
tolerate a certain class of faults, or exhibit certain behavior in the presence of certain
faults, these faults can be directly injected into the system to examine their effects.
The system will either behave appropriately or not, and it’s fault tolerance mea-
sured accordingly [23]. For certain classes of ultra-dependable untestable systems
in which the occurrence of errors is too infrequent to effectively test the system in
the field, fault injection can be a powerful tool for accelerating the occurrence of
faults in the system and verifying that the system works properly.

— Augment the trust in a system. In context of a certification process safety-critical

systems are tested with fault-injection. The execution of extensive fault-injection
experiments can be a substantial certification requirement.

— Determination of metrics. Fault injection is a method to create unusual conditions to

test the system for robustness. This quantifies a hard- or software prototype system.
Thus, a metric for measuring the robustness of a system is provided. A classical
metric is the fault-coverage of a fault-tolerant system. The fault-coverage is de-
fined as the amount of detected errors divided by the amount of injected faults. In
practice these metrics are hard to determine because the system must be observed
over a long period of time. Such metrics (e.g. reaction times) can be determined
experimentally through tests. There are two difficulties which must be addressed.
The first is the diverse nature of systems, and the ways in which they can fail or
experience faults. Unless two systems are set to accomplish the exact same task,
determining the relative robustness is a difficult task. A good metric for robustness
would be able to resolve this difference. Secondly, it is not yet certain the met-
ric should be biased. A common practice is to have the test distribution mirror the
real world distributions of fault occurrences. If we are truly testing the system’s

Hardware Reliability 81

response to unusual situations, however, it might be better to bias the test towards
the less frequently encountered conditions.

Fault injection methods should exhibit the following properties:

Repeatability: Conducting the experiments several times should lead to the same re-
sults — at least in a statistical sense.

Reproducibility: Other parties should be able to come to similar results when con-
ducting the experiments.

Portability: The fault injection method should allow to be applied to other systems.

Non-intrusiveness: Modification and influence / disturbance of the system under test
should be minimal, although some modifications / influence is inherent in the ap-
proach of fault injection (see Figure[7).

Failure predictors typically contain the elements shown in Figure[Zl A fault injection
controller runs on a separate host injecting faults by use of a hook at the target system.
In order to verify that the injection really caused a fault and to record other data, a
readout collector sends measurements to the fault injector host where they are stored.

faults
Fault FI hook Tarcet
inj arge
In#leocst:) r Readout computer
measurements | collector
-

Fig.7. Typical fault injector architecture

Fault injectors can be classified by the FARM model considering the set of Faults,
Activations, Readouts, and Measures.

— The set of faults is basically the fault model and fault emulation technique of the
fault injector. In most cases, it consists of a set of fault triggers and fault types.
Triggers are conditions when a fault should be injected and types define the tech-
nical modifications that are performed once a trigger condition is met. Chapter[IQ]
covers of software and operator faults in more detail.

— The set of activations defines how the system under test is exercised. It covers a
definition of workload profiles etc.

— Readouts are the raw measurements that are recorded.

— Measures are the metrics that are derived from readouts.

General disturbance techniques can only be used to emulate the bit-flip fault model
representing transient faults, while direct pin-level modifications can emulate both fault
models. Pin-level fault injection can be implemented by all injection techniques: phys-
ical techniques, simulation-based, software-implemented and hybrid approaches. The
drawback of pin-level techniques is that for bit-flip emulations they have to operate on
high frequencies (at least system rate).

Four main types of fault injection techniques exist: Hardware implemented,
simulation-based, software implemented and hybrid tools. Physical fault injection uses

82 I. Eusgeld et al.

heavy-ion radiation, electromagnetic interference, power-supply disturbance or altering
of pin-levels. Simulation-based tools need a simulation model of the system under test
and simulate the effects of faults, software implemented fault injection (SWIFI) inter-
rupts the system and executes fault injection code. Hybrid approaches are a mixture of
the previously mentioned, for example, debugging interfaces can be used to interrupt the
processor on the hardware layer and to execute fault injection software. Fault-tolerance
techniques can only be applied if the correctness of counter measurements against pos-
sible errors in safety-critical systems can be proven against an issuing authority. To do
this, appropriate fault-injection techniques are used.

Fault injection can be performed on either simulations and models, working proto-
types or systems in the field. There are two main issues in fault injection.Along these
axes that different fault tolerant techniques may de divided.

Simulation-based Fault Injection Techniques. Simulation-based fault-injection of-
fers the possibility to inject faults in a model of the system to be examined. Fault-
injections are done through modification of the model. These can be only carried out in
the design process. A complete simulation can only be done with high additional time
complexity.

Points of accessibility are:

— The transistor level,

— The logic level on which the system is represented, e.g. register-transfer level (RTL)
or a hardware description language (HDL) such as VHDL (Very High Speed Inte-
grated Circuit Hardware Description Language),

— The functional level.

The fault model directly determines which faults are allowed. The most detailed injec-
tion concerning fault-types and location is at transistor level. Faults can be injected by
e.g. modifying the netlist of the concerned circuit. By manipulating the VHDL-sources,
faults can be induced in the logic level. The injection of faults on the functional level
consists of modifying the output of the circuit. Furthermore, state changes within a
model (saboteur) and structural changes (mutation) are distinguished. A fault-injection
run consists of a program execution on the modified hardware. In principle, each mod-
eled hardware component can be used as access point for fault-injection (probe).

The level of detail in which system and fault-injection probe are modeled, deter-
mines if fault effects - including the expected fault propagation - are modeled correctly
so that it matches the final system realization and environment. No matter what type
of fault-injection is applied, the system environment determines fault types within the
fault-injection. Ideally a complete model of the hardware component e.g. in VHDL is
available which covers all circuit details on logic level. Each detail of the circuit can be
seen as a fault-injection probe. Since any modifications can be done within the model,
it is possible to model various fault-types and to determine any fault duration and cause
of a fault.

A high level of detail means a low injection speed since all modeled hardware com-
ponents must be simulated. In practice detailed fault-injection experiments can lead to
unacceptable simulation times. Besides the needed computing power to do the simu-
lation, another disadvantage of simulation-based fault injection is that detailed hard-
ware models of e.g. commercial microprocessors hardly exist or are not available to

Hardware Reliability 83

the public. Simulation-based approaches enable the injection of almost any fault type
and the injection of permanent faults. Hardware simulations typically occur in a high
level description of the circuit. This high level description is turned into a transistor
level description of the circuit, and faults are injected into the circuit. Typically these
are stuck-at or bridging faults, as software simulation is most often used to detect the
response to manufacturing defects. The system is simulated to evaluate the response
of the circuit to a particular fault. Since this is a simulation, a new fault can be easily
injected, and the simulation re-run to evaluate the response to the new fault. It con-
sumes time to construct the model, insert the faults, and then simulate the circuit, but
modifications in the circuit can be more easily accomplished than later in the design
cycle. This sort of testing would be used to check a circuit early in the design cycle.
Simulations are non-intrusive, since the simulation functions are normally separated
from those doing the introduction of the fault. For hardware simulation most tools will
take a hardware specification and inject faults into it for simulation. One example of
such tool is MEFISTO [257], which injects faults into VHDL description of a circuit
and simulates them. It takes advantage of the manner in which systems are specified
in VHDL to alter signals and values in the circuit - [257] details the operation of the
VHDL fault injection. If special circuitry be included to cause or simulate faults in the
finished circuit, these would most likely affect the timing or other characteristics of
the circuit, and therefore be intrusive. In contrary to simulation-based fault-injection,
physical fault-injection injects faults into the component to be tested while running.

Physical Fault Injection Techniques. Hardware fault injections occur in the actual
implementation of the circuit after fabrication. Using this method, tests generally pro-
ceed faster than in simulations. The circuit is subjected to some sort of interference
to produce the fault, and the resulting behavior is examined. Typically it is performed
on VLSI circuits at the transistor level, because these circuits are complex enough to
warrant characterization through fault injection rather than a performance range, and
these are the best understood basic faults in such circuits. Transistors are typically given
stuck-at, bridging, or transient faults, and the results examined in the operation of the
circuit. Such faults may be injected in software simulations of the circuits, or into pro-
duction circuits cut from the wafer.
Injectors can use the following different techniques:

— Direct manipulation of signals
— Parasitic induction (e.g. radioactive source, generators to create electromagnetic
interferences).

For hardware execution, several tools exist. One is pin level testing, which manipu-
lates the voltages at the pins in order to induce faulty or unusual conditions. The MES-
SALINE [23] project is an example of this sort of testing regime. The injection through
direct manipulation of signals is a broadly used fault-injection technique. At the access
point of the hardware (e.g. the pins of a microprocessor) the applied signals are manipu-
lated. This can be done by directly accessing the pins or by usage of special test sockets
which are inserted between processor and processor socket. By using a special test bus
(JTAG-Bus) the limitation to signal manipulation at the pin-level can be overcome. The
JTAG (Joint Test Action Group) or IEEE 1149.1 [236] boundary-scan standard has been

84 I. Eusgeld et al.

] T Tt

Pinl CORE

| LOGIC \L %l
1] > ;
sl }7%& =

]_,—-| D REGISTER
» ——| BYPASS REGISTER

—-| INSTRUCTION REGISTER }—.
t = f
INTEST

EXTEST

TDI NO-TEST AP

TCK
TMS

TDO ‘ﬁ

Fig. 8. The JTAG boundary scan interface

adopted industry-wide. Via the JTAG interface, boundary-scan solves test access prob-
lems introduced by advanced IC packages such as BGAs (Ball Grid Arrays). Figure
shows the basic JTAG interface structure.

Since the JTAG is a serial bus, fault-injections take a long period of time. In the last
years, the industry tried to overcome this problem by introducing higher clock rates
for TCLK.

Another technique is based on the artificial injection of fluctuations in the operat-
ing voltage of the examined circuit. Injections based on parasitic induction rely on the
injection of faults through radiation with heavy-ions, lasers or electromagnetic radia-
tion. The FIST project ﬂﬁ] used heavy-ion radiation to project random transient faults
into the interior of a chip for testing. The MARS project] extended this to include
electromagnetic fields to create faults in the interior of the chip. These methods tend
to produce random temporary and permanent errors on more or less random locations
in the hardware rather than targeted faults]. A new method of fault injection ad-
dresses this concern. Laser Fault Injection (LFI) uses a laser to inject faults precisely
into the interior of the chip at specific times [423]. This allows a higher level of control
and a much better data set than the other two methods. It is possible to manipulate the

Hardware Reliability 85

bitstream being send to an FPGA (Field Programmable Gate Array) in such a way that
transient or permanent faults can be injected. The fault can be precisely located, but
the effect of the fault is often unclear. Futhermore, the FPGA could be damaged, if no
counteractive measures are taken. As JTAG, FPGA-fault injection is strongly hardware
dependent. See [155] for details. Newer FPGA types enable the injection of delay faults
by reprogramming the concerned units [156] so that the direct manipulation of signals
becomes obsolete.

Software-implemented Fault Injection Techniques. While injectors of physical
faults can confront the hardware more with the cause of a fault, software-implemented
injectors mainly model the causes of a fault in software. They are popular, since they
offer a low-priced and flexible alternative to physical fault injection.

Software fault injection is used to inject faults into the operation of software and
examine the effects. This is generally used on code that has communicative or coopera-
tive functions so that there is enough interaction to make fault injection useful. All sorts
of faults may be injected, from register and memory faults, to dropped or replicated
network packets, to erroneous error conditions and flags. These faults may be injected
into simulations of complex systems where the interactions are understood though not
the details of implementation, or they may be injected into operating systems to exam-
ine the effects. Software simulation typically is a high-level description of a system,
in which the protocols or interactions are known, but no implementation details. These
faults tend to be mis-timings, missing messages, replays, or other faults in communica-
tion in a system. The simulation is then run to discover the effects of the faults. Because
of the abstract nature of simulations, they may be run at a faster speed that the actual
system might, but would not necessarily capture the timing aspects of the final system if
it is not asynchronous. This sort of testing would be performed to verify a protocol, or to
examine the resistance of an interaction to faults. This would typically be done early in
the design cycle. Simulations are non-intrusive, as they are simulated, but they may not
capture the exact behavior of the system. Software fault injections are more oriented to-
wards implementation details, and can address program state as well as communication
and interactions. Faults are mis-timings, missing messages, replays, corrupted memory
or registers, faulty disk reads, and almost any other state the hardware provides access
to. The system is then run with the fault to examine its behavior. These simulations tend
to take longer because they encapsulate all of the operation and detail of the system, but
they will more accurately capture the timing aspects of the system. This is done later
in the design cycle to show performance for a final or near-final design. Simulations
are non-intrusive, especially if timing is not of a concern. If timing is not involved the
time required for the injection mechanism to inject the faults can disrupt the activity
of the system. This can cause timing results that are not representative of the final sys-
tem without the fault injection mechanism deployed. A known fault in injected and the
results examined to see if the system can respond correctly despite the fault.

Please note that for software-implemented fault injection, the shortest time for bit-
flips is the duration of one cycle, hence the effect of glitches cannot be emulated. Ad-
ditionally, software implemented techniques can only modify the level of bits within
the processor or its memory and not of other hardware units that are, e.g., on the
same board.

86 I. Eusgeld et al.

The following disadvantages exist:

— Assumptions must be made on which hardware faults can occur in practice.
— The exact effects of an assumed internal hardware fault are probably not known
and can only be modeled approximately.

Software-implemented fault-injection is divided in pre-runtime and runtime. With pre-
runtime fault-injection, faults are injecte before the simulation starts. Runtime fault-
injection will inject faults into the system while running.

Most of the software tools that exist are for testing of actual systems, and not a
simulation. This is probably due to the difficult task of correctly capturing high level
behavior without the implementation being finished, and the relative ease of inserting
faults into operating systems due to the debugging facilities provided by modern hard-
ware. Ferrari is a testing system that introduces CPR, memory, and bus faults through
CPU traps during normal execution. Ftape is a system that introduces CPU, memory,
and disk faults through altered drivers and OS modifications]. DOCTOR] is
a tool for introducing faults into a distributed real time system under synthetic work-
loads, introducing CPU, memory, and network faults through time-outs, traps, and code
modification. Xception 187] causes multiple sorts of faults through hardware exception
triggers. ORCHESTRA (113] is a distributed system testbed that tests protocols by in-
serting faults through the introduction of a Fault Injection Layer between the protocol
and the communication layer beneath it].

Table Pl exemplarily lists some fault-injection tools.

Table 2. Different Fault-Injection Tools

Simulation-based Physical Software-implemented
VERIFY [444] JTAG [236] ProFI [319]

MEPHISTO [257] MESSALINE [23] FERRARI [175]
RIFLE [326] FIAT [39]
FIST [202] Xception [87]
ORCHESTRA [113]

Further reading. Introductory material can be found in], [@],] and].
] an] additionally list several tools currently available for fault injection.]
discuss fault injection as a testing and verification tool, rather than a debugging tool
while [490] describe the inversion of test pattern frequencies from the usual observed
workload to putting the emphasis on the unusual cases. (23] describes basic theory and
describes interpretation of results.

Discussion. The results of fault injection need to be given meaning. At an absolute
level, it described the system’s ability to resist certain faults, and fall prey to others.
This can be thought of a way of testing the robustness of the system, and its ability to
operate under unusual conditions. If it is to be used as such, though, then its relationship
to robustness needs to be better defined, and a framework for understanding the numbers
that result needs to be built. While some of the theoretical underpinnings are there, the
actual interpretation of the practice is not.

Hardware Reliability 87

Examples of Sources of Evidence

Previous Usage

Calculations

|

1

|

1

|

1

1

|

1

1

| \
1

1 Testing / Trials

1 o
1 ARGUMENTS
|

1

1

|

1

1

|

1

|

1

1

Simulation 7 "

Analyses

R&M

Expert Opinion CLAIMS

1
1
1
}
1
1
1
1
1
1
1
1
1
REASONED 1
1
1
}
1
1
1
1
1
1
1
1
1
4

Fig. 9. Sources of reliability evidence [@]

Having answered the first question about the goal of the prediction, one should
concentrate on the available information. It is dangerous to start the modelling pro-
cess without having a look onto special properties of the input. The Defence Standard
00-42: R&M Case [@] lists a number of different sources of reliability evidence (a
quite general term for model input) as depicted in Fig. [9l Evidence includes not only
what one would consider as facts (test data, field data), but also other sources like ex-
pert opinions. The listed data sources may be divided into different categories: On one
hand, we deal with “hard” data, e.g. from the field or experiments (e.g. accelerated life
testing) or physical models. On the other hand, there are “soft” sources as e.g. expert
opinions/estimates or similar component/forerunner data. These data types may vary
in their availability, accuracy and uncertainty, but reliability engineers can’t afford to
waste away any of these sources.

In conclusion, reliability modelling data can be obtained from the following sources:

— Soft sources

Field data from published sources

Physical models that provide formulas to estimate reliability data
Environmental stress screening

Fault injection

Each source will be discussed separately in the following sections.

Uncertainty in Data Sources

As outlined, different types of sources may contribute to the model with information
of different quality. Information sources may provide uncertain data, or they may be
conflicting.

88 I. Eusgeld et al.

One of the most controversial scientific discussions in uncertainty analysis are the
various forms of uncertainty. Perhaps most common is the separation into two cate-
gories: epistemic uncertainty and aleatory uncertainty [@]. Aleatory uncertainty arises
from variability of the system or environment considered.

Definition 2 (Aleatory uncertainty - Noise). Inherent variation associated with the
physical system or the environment under consideration [@]

Aleatory uncertainty (often referred to as repetition uncertainty) may e.g. be observed
in random experiments as dice throws or chaotic system behaviour. Aleatory uncer-
tainty regarding a quantity of interest can often be distinguished from other types of
uncertainty by its characterisation as a random value with known distribution. The ex-
act value will change but is expected to follow the distribution. A simple example for
aleatory uncertainty is the uncertainty about the outcome of a coin toss X € {0,1}. We
are uncertain about head (X = 0) or tail (X = 1) of a single throw, but we are sure that
each of the numbers will occur with a probability P(X = 0) = P(X = 1) = 1/2. Infi-
nite repetitive executions of this experiment will lead to the observance that the relative
frequency converges to the given probability values. Traditional reliability engineering
applications tend to model only aleatory uncertainties, which can lead to dangerous
underestimations of the project risk.

On the contrary, epistemic uncertainty describes not uncertainty about the outcome
of some random event due to system variance but the uncertainty of the outcome due to
lack of knowledge or information.

Definition 3 (Epistemic uncertainty - Imprecision). Uncertainty of the outcome due
to any lack of knowledge or information in any phase or activity of the modelling pro-
cess Ji

This shows the important distinction between this two types of uncertainty. Epistemic
uncertainty is not an inherent property of the system. A gain of information about the
system or environmental factors can lead to a reduction of epistemic uncertainty. Fo-
cussing again on the dice example, lets imagine we know that the coin is biased and
our knowledge about the exact probabilities therefore limited. We might expect that the
probability is limited by p(X = 0),p(X = 1) € [1/12,7/12] or may itself be described
by a second-order probability. Of course, the coin follows a distribution and if we carry
out multiple runs, evidence would grow (i.e. shrinking the intervals on p(X = 0) and
p(X = 1). After an infinite number of experiments, we would find out that it is e.g.
p(X =0) = 1/3,p(X = 1) = 2/3. However, before doing so, there is not enough
evidence to assume any possible distribution on X without neglecting that reality may
be anywhere else. Hence, epistemic uncertainty is our inability to model reality.
Epistemic uncertainties occur in large amounts in almost all system reliability mod-
els, especially if large software systems are considered. Either it is impossible to carry
out enough experiments for gathering informations about the quantity of interest. Or
it is possible, but the resources (time, budget, manpower...) necessary surpass the con-
straints. While the application of probability theory is unquestionably the right choice
for modelling aleatory uncertainties, this is not necessarily the case for epistemic quan-
tities. It has been heavily discussed if probabilities are an adequate representation for
degrees of belief and assumptions that are put into a model. The behavioural or Bayesian

Hardware Reliability 89

interpretation claims this and associates probabilities with degrees of belief, transferring
probability theory to belief modelling. This opposes to other theories as e.g. fuzzy sets
and imprecise probabilities.

Walley] describes several sources of imprecision in the model. He distinguishes
between “indeterminacy” and “incompleteness”. Indeterminacy reflects limitations of
the available information, which might e.g. be the unknown value of a Weibull shape
parameter. Incompleteness is caused by a simplifying model which allows to use only
a partial amount of information the experts could provide. Incompleteness is caused by
difficulties in the elicitation or modelling process. In this case, the engineer may know
the exact values of the Weibull shape and form parameter. However the model allows
only the estimation of a constant failure rate. Walley [496] gives a list of sources of
imprecision, which he groups into “indeterminacy” and “incompleteness”.

Lack of information. The absence of evidence concerning the quantity of interest

Conflicting information. Different sources of information do not necessarily lead to
a reduction of imprecision, if these sources are conflicting (e.g. 5 € [1.2,1.5] and
B3 € [2,2.3] by two test runs). Can be reduced by investigating prior probabilities
or information source quality.

Conflicting beliefs. In contrast to the conflicting information, conflicting beliefs are
not based on evidence but on expert opinion. Either the experts have access to
different sources of information or they assess the information in different ways.
Can be reduced by iterative elicitation.

Information of limited relevance. If the information that the model is based upon
is only scarcely usable for prediction. E.g. if similarity estimates are based upon
strongly different components, this should be reflected by a high amount of impre-
cision.

Physical indeterminacy. The quantity of interest is simply not precisely predictable
with infinite information. This may be the case for prediction problems, either the
problems are physically indeterminate or the underlying processes are too complex
to be modelled in detail, or the parameters are not estimable from data (e.g. if only
censored lifetime data is available). Walley groups this point to indeterminacy while
it could reasonably argued that it belongs to incompleteness of the model.

Lack of introspection. Experts do not have time or resources to reduce the amount of
uncertainty in their estimate. Walley calls this the “cost of thinking”.

Lack of assessment strategies. There is a lot of relevant information available, but
it is not straightforward to construct probabilities from it (e.g. textual reports or
excessively detailed damage statistics). If the data is simplified, imprecision should
be added.

Limits in computational ability. Imprecision introduced by lack of computational
power.

Intractable models. The probabilistic model might be inconvenient or too complex. If
replacing it by a simpler one, imprecision should be introduced.

Choice of elicitation structure. Depending on the experience of the assessor and the
assessment technique, there may be a limit on the accuracy of the elicitation.

Ambiguity. The “fuzzy” characteristics of linguistic estimates as e.g. “pretty likely”
and “almost impossible” introduce uncertainty if translated to probabilities

90 I. Eusgeld et al.

Instability. Using different elicitation methods or even the same method twice may
lead to different assessments, because beliefs are unstable (e.g. underlying infor-
mation is remembered or weighted different) or estimates are overly precise (which
is often the case in reliability prediction, when the notion of imprecision is not cor-
rectly understood). Walley suggests to use a conservative aggregation strategy as
e.g. enveloping for this case.

Caution in elicitation. Engineers may tend to give much higher imprecision ranges
than necessary in case they e.g. fear to be blamed for wrong estimations.

Table 3. Sources of uncertainty [@]

Indeterminacy Incompleteness
Lack of information Lack of introspection
Conflicting information Lack of assessment strategies
Conflicting beliefs Limits in computational ability
Information of limited relevance Intractable models
Physical indeterminacy Choice of elicitation structure
Ambiguity
Instability

Caution in elicitation

Soft Sources

Data from similar components are normally introduced in the model via a qualitative
analysis (230, 237). Similarities between new and in-field components are determined.
The failure data from in-field components (e.g. probabilities of special failure modes)
is then transferred to the new model. Either the data is left untouched (both components
have the same properties) or is modified (both components have similar properties).
For constant failure rates of electronic components, this modifications may be done by
physical model-based similarity analyses.

Expert judgement has its greatest advantage in its omnipresence. Everywhere you
build a model, you will find at least one expert who is willing to give a statement about
the input parameters. Most often, there will even be a large number of estimates from
various experts. Unfortunately, expert estimates are by nature uncertain and conflicting,
and thus they need to be introduced with care. Aggregation methods, uncertainty prop-
agation and reduction techniques have to be used as e.g. described in Cooke [Eéf]) and
Sentz and Ferson].

Soft data may require special uncertainty propagation methods. Dealing with un-
certainties in “hard” data (e.g. physical variance) is quite straightforward and requires
standard probabilistic methods. However, the question how to model gradual belief and
lack of knowledge seems much more controversial. Methods to propagate expert un-
certainties through reliability models include e.g. Fuzzy probabilities [@], Bayesian
(subjective) probabilities [é] and imprecise probabilities],]. Walley]
argues and compares some of these methods and lines out their merits and limits. Klir
[ﬁ] shows the different mathematical properties and lists imprecision and entropy
measures for each of the proposed methods. Very useful practical comparisons can e.g.
be found in [@] and].

Hardware Reliability 91

All of these methods are concurrently applied in modern reliability science. Per-
haps the most popular approach is Bayesian modelling (e.g. applied in Groen et al.
1). Fuzzy probabilities are most often the tool of choice if it comes to the cap-
turing of linguistic / verbal estimates (reliability is “high”) due to the traditional use
of fuzzy logic in Al. Perhaps most influential on practical reliability prediction were
the PREDICT methodology], [@] Other approaches include Hryniewicz],
which apply a variety (shadowed sets) and Leuschen et al.], which fuzzify clas-
sical Markov models. The most recent “trend” in reliability prediction are imprecise
probabilities, uniting interval and probabilistic calculations. Applying imprecise prob-
abilities to propagate uncertainties through physical models] and logical models,
such as RBDs ﬂ%)%, 479] has become more popular in the past. Applications in software
reliability] are also available. But this field is still developing, as Rakowsky]
and Coolen] line out.

9.5 Modelling Complex, Fault-Tolerant Systems

The dependability of large systems consisting of multiple components like circuit
boards, integrated circuits, disks, and network devices is usually estimated by the use
of dependability models. In this section, we will exemplify this with the measure avail-
ability. Similar (or in many cases identical) techniques exists for reliable systems (Reli-
ability and availability are the same for non-repairable systems). In recent publications,
even the security of systems was analysed using similar approaches as described here
499, 500)].

The idea behind modelling complex High-Availability systems is to first quantify the
availability of the components (possibly by first decomposing them into their subcom-
ponents) and to calculate the system’s overall availability in a second step, according to
a well-defined set of assumptions. These assumptions are called an availability model
of a fault-tolerant system.

Example: If we assume that a system is composed of n components comp;, compa,
comps, ..., comp,, and

— all failures and repairs are exponentially distributed events,

— components are either fully working, or completely failed,

— the failure and repair rate of component comp, are \; and p;, respectively,

— all failure and repair events are assumed to be pair-wisely stochastically indepen-
dent, and

— the system is available if and only if all its components are available

we can compute the overall system’s steady state availability A by:
- . . - Hi

A= || Pr{comp, is available} =
IT Pricom, =10,

As the system is available if and only if all components are available, the steady state
availability of the system is the probability that all components are available at the same

92 I. Eusgeld et al.

time. As these events are stochastically independent, this probability can be computed
by multiplying all the individual availabilities.
In the following, we will use the abbreviations below:

¢; := "comp, is available", and (1)
a; := Pr{c;} := Pr{"comp; is available"} (2)

Redundancy Structures

Per definition, a fault tolerant system does not necessarily fail as soon as one of its com-
ponent stops working but will continue operating as long as not too many components
are failed at the same time. The number and kind of failures which can be tolerated
depends on the redundancy degree which was chosen for the system. In general, a re-
dundancy structure formula is used to define the combination of component failures
which lead to a system failure.

Example: A system consists of 2 servers (c1,2) and a network (c3). The system is
assumed to be available, if the network is available and at least one of its servers is
working. The redundancy structure ¢ of this system can be specified by the following
boolean expression using AND (A) and OR (V) operators:

d) = (Cl V CQ) A C3 (3)

In general, arbitrary boolean functions with variables ¢y, ¢, . . . ¢,, representing the
basic events "component ¢; is available" can be used to specify the redundancy structure
of a system.

The example above is a special case, because every basic event appears at most
once in the formula. In this simple case, we can apply the following formulas which
are known from basic probability calculus for independent events (¢ » are arbitrary
boolean terms):

Pr{¢1 A g2} = Pr{¢1} - Pr{p2} 4)
Pri{¢1V ¢2} = Pr{¢1} + Pr{¢2} — Pr{é1 A ¢2} S
Pr{i=¢1} =1— Pr{¢} (6)

Using the definition Pr{c;} = a;, we can express the availability of the system
defined in Equ.[3lin terms of the availabilities of its components:

Pr{¢} = Pr{(c1 Vea) N3} =
= Pr{(c1 Ve2)}- Prics} =
= (a1 +ag—a1-az) a3 =
= aiaz + azaz — a1a2a3 (7

The amount of work which has to be done for such a computation grows linearly with
the number of operators in the structure formula which in turn is bounded by the number

Hardware Reliability 93

of components of the system (We assumed that each component can only appear once
in the formula). Models of this simple kind can therefore be evaluated in linear time
with respect to the number of their components.

However, not all systems can be modelled with a structure formula containing each
component only once:

Example: A k-out-of-N:G-system consists of N components. The system is available,
if k£ or more components are available (or good). For the case N = 3 and k = 2, we
can specify its redundancy structure ¢ by

¢ = (Cl A CQ) \Y (Cl A Cg) V (CQ A 03) (8)

In this case, the sub-terms of the formula are not stochastically independent. For
instance, the sub-terms c¢; A c2 and ¢; A c3 are not independent as they both con-
tain the variable c;. However, applying Equ. @] implies (by definition) independent
events.

An alternative approach of analysing structure formulas which also works with re-
peated events is based on the so called Shannon Decomposition. This approach com-
prises n steps, one for each component of the system. In each step, two Boolean terms
are derived from the structure formula. In the first term ¢._¢ye the variable c is substi-
tuted by true, whereas in the second term ¢__ f,1e the variable c is substituted by false.
For example, the probability of the formula in Equ. [§]can be written as:

Pr{¢} =ay - PT{¢C1: true} + (1 —a1) - PT{(bcl: false} =
=ay-Pr{caVesV(caANeg)}+(1—ar) Pri{ca Aes} =
=ai-(az-1+ (1 —a2)-a3) + azaz — ajagaz =

= aiaz + ajas + azaz — 2a1a2a3 9

Using this technique, the variables are repeatedly substituted, until no term contains
repeated variables anymore. In the worst case this has to be done for each variable, and
for every substitution two terms have to be recursively computed. Thus, the compu-
tational effort grows exponentially with the number of components. In fact, it can be
shown that computing the availability of a system is an NP-complete problem if it has
an arbitrary redundancy structure.

In practice, efficient solution methods exists for the most common classes of re-
dundancy structures. Most modern approaches are based on binary decision diagrams
(BDDs ,@]) and can cope with very large systems comprising thousands of com-
ponents.

Fault Trees and Reliability Block Diagrams

In practice, the redundancy structure is usually defined by using either fault trees or
reliability block diagrams. Fig.[[0lshows a fault tree and a block diagram of the structure
formula of Equ.

The fault tree is an explicit graphical representation of the structure formula. Its
leaves (shown at the bottom of the tree) represent the negated variables of the formula.

94 I. Eusgeld et al.

¢
O
Ci —— ©
S t
¢, —— ¢c3
Co |—o—| 03

Fig. 10. Fault tree (left) and reliability block diagram (right) of the 2-out-of-3:G-system

In other words, they represent the unavailabilities of the individual components. The
root of the tree is called top event and represents the event "system unavailable". Oper-
ators (AND and OR) are represented by so called gates. Evaluating a fault tree means
computing the probability of its top event form the probabilities of its leaves. Again,
this can be done fast and easily, if each component appears only once in the tree. In
this case, the calculation is performed from bottom to top, applying Equ. [] at each
AND-Gate and Equ. [3]at each OR-gate.

Despite their name, reliability block diagrams (RBD) can be used for both reliability
and availability analysis. They define a structure formula in an implicit way. An RBD
is a undirected graph, whose edges are labelled with components. Two nodes of the
graph, called s and ¢, play a special role. The system is assumed to be available, if and
only if there exists at least one path (i.e. a subset of the edges of GG) from s to ¢, which
comprises available components, only. Thus, the structure formula of an RBD can be
obtained by finding all minimal paths from s to ¢. In this context, minimal means that
no edge can be removed from the path without disconnecting s and ¢. In the worst case,
the number of paths from s to ¢ grows exponentially with the number of edges. In some
cases (but not always), it is therefore better to find the number of minimal cut sets to
obtain the redundancy structure. A cut set is a subset of edges, which, if removed from
the graph, will separate s from ¢. A minimal cut set is a cut set from which no edge can
be removed without connecting s with ¢.

Obtaining the redundancy structure from an RBD is — again — an NP-complete task.
In practice, fast methods exist to obtain a BDD from the RBD [|§l|,]. This has the
advantage that these BDD can be quickly evaluated as mentioned before.

Many systems are k-out-of-N-systems or contain such systems as subsystems. k-
out-of-N:G system were already defined before as systems comprising N components
which are working as long as at least k components are available. Likewise, k-out-of-
N:F systems comprise N components, and are unavailable, if at least k components
are unavailable. As it was exemplified in Equ. [§] and Fig. k-out-of-N-systems can
be modelled using regular AND and OR gates. However, to avoid the large trees or
diagrams which are necessary to depict large system (try drawing a fault tree for a 50-
out-of-100:F system!), special edges and gates are used in the graphical representations.
Fig. [Tl shows how the diagrams from Fig. [0 can be simplified by using k-out-of-N:F-
gates and k-out-of-N:G-edges, respectively.

Hardware Reliability 95

2—out-of-3:F

Cy C, Cg

Fig. 11. Simplified fault tree (left) and reliability block diagram (right) of the 2-out-of-3:G-system

The structure formulas of fault trees and block diagrams containing k-out-of-N sub-
systems can be obtained by replacing the gates by conventional AND and OR gates,
respectively. However, there also exist more efficient solution methods which avoid the
potentially large classical representations [13].

State-Based Methods

The classical solution methods for combinatorial modelling methods can deal with ar-
bitrary redundancy structures, but work only under the assumption, that the failure and
repair behaviour of all their components is stochastically independent. In practice, this
is hardly ever true. For example, catastrophic events can destroy several components at
once.

These failures with a common cause are a major threat to fault tolerant systems, as
they may affect all redundant components of the system at the same time and lead to a
complete system failure. Other examples for inter-component dependencies are failure
propagation, failures due to improper repair, and delayed repair if too many components
are failed at the same time and the repair personnel is overburdened.

All these dependencies decrease the dependability of a fault tolerant system. Thus,
if they are not included in a model, the model is over-optimistic, sometimes by several
orders of magnitude. To avoid this kind of over-optimism, state-based methods can be
used.

State-based methods enumerate all possible failure states of the system in a so-called
state space.

Example: A 2-out-of-3:G-system with identical components has four states S =
{s0, 81, 82, 83} In state s;, ¢ components of the system are failed. As all components
are equal, no distinction has to be made which component is failed. If one knew the
probability p; that the system is in state ¢, one could compute the availability by adding
po and p1, as these are the states where the system is available.
The system can be modelled using a Markov chain (see Sec.[§]) shown in Fig.
Using this Markov chain as a system model implies the following assumptions:

— All three components have an equal failure and repair rate, denoted by A and p,
respectively.

96 I. Eusgeld et al.

3A 2\ A
()=

u 2u 3u

Fig. 12. Markov chain of the 2-out-of-3:G-system

— All failure and repair events are independent, the rates are constant.
— All components are either fully working or not working at all.
— The system is available, if at least two out of the three components are working.

The Markov model is therefore equivalent to the fault tree from Fig. Indeed, an
evaluation of the Markov chain yields the same results:

A steady state distribution of the state vector ¢ = (s, 51, 52, 53)7 can be computed
by solving the linear equations

¢-Q=0and » s=L (10)

i€0,1,2,3

As the corresponding generator matrix () is

=3\ 3A 0 0
_ o= =2\ 2) 0
Q= 0 2u —2u—X A an
0 0 3 —3u
Equ.[L0 can be written as an equation system:
—3Xso+ ps1 =0= 509 = o
0T MS1 = 0= 3\ 1
A
3Asg — (4 2N)s1 + 2us2 =0 = s9 = ,usl
)\2
2Xs1 — (24 N)sa + 3usz3 =0 = s3 = 551
3
Asg — 3uss =0
So+s1+s2+s3=1=35 = 31
0t 81+ 82+ 853= 1= (14 \)?
This yields:
So = " ;81 = 3M2A' Sg = 3M>\2' S3 = N ; (12)
BRI () N (7 P A Vil
Applying a = (;Li N and1 —a = (Hi NE the availability of the system is:
A =50+ s, = 3a® — 2a, (13)

which is equivalent to Equ. [for the special case a; = as = a3 =: a

Hardware Reliability 97

Fig. 13. Markov chain of the 2-out-of-3:G-system and inter-component dependencies

Thus the Markov model shown in Fig.[12]is equivalent to the Boolean models from
Fig. However, the Markov model is not limited to stochastically independent com-
ponents. For example, it is possible to extend the Markov model by a common cause
failure as shown in Fig.[13

In this figure, three additional transitions with rate Ao model the occurrence of a
catastrophic event which destroys all components of the system at once. In this case,
the system will be put into state 3 immediately.

The problem with Markov chains is the possibly huge number of states which, in
general, grows exponentially with the number of components the system consists of.
For example, a more general model of the 2-out-of-3:G system, this time with non-equal
components, already consists of 23 states (see Fig.[I4). As a consequence, systems with

Fig. 14. Markov chain of the 2-out-of-3:G-system. Each component has a different failure- and
repair rate

98 I. Eusgeld et al.

more than a few dozen components will consist of millions and billions of states and can
therefore not be created by hand but must be generated automatically using a somewhat
more abstract modelling formalism like stochastic Petri nets.

Stochastic Petri Nets

Petri nets are a well known technique to implicitly define large finite (or even infinite)
automatons needed to model distributed systems. Likewise, stochastic Petri nets, i.e.
Petri nets with timed transitions, can be used to implicitly define Markov chains with
large state spaces. In the context of availability modelling, Petri nets have the advantage
that the size of the net, i.e. the number of places and transitions, grows only linearity
with the number of components.

. MTTR
P1: active / repair
#P3
A ="1 IF{ #P1 >= K}"
MTTF
failure / P3: failed / in repair
#P1

Fig. 15. Petri net of a k-out-of-N:G system with identical components. There are no stochastic
dependencies between the components.

In some cases, the size of the net is even constant, i.e. it does not depend on the
number of components at all. For example, Fig.[T3]shows a Petri net modelling a k-out-
of-N:G-system with identical components. It consists of two places (depicted as circles)
and two transitions (depicted as boxes). The Place active initially contains N tokens
representing the number of non-failed components. The transition failure is attributed
with the delay MTTF, meaning that the components fail according to an exponential
distribution with rate MTTF . If the transition fires, it "moves" a token from the place
active to the place failed. From there, it can get back to the place active via the transition
repair, which is attributed with the delay MTTR.

Please note that both delay times are marking dependent: the constant values MTTF
and MTTR are divided by the number of tokens in the places active and failed, respec-
tively. This models the fact that the mean time to a component failure/repair depends
on the number of available/unavailable components in the system.

For numerical evaluation, the reachability graph, whose nodes are all possible mark-
ings which can be reached from the initial marking, is generated. It is easy to see that
the number of nodes in this graph is finite and depends on the parameter N. For N = 3,
the reachability graph is equivalent to the Markov chain in Fig.

Hardware Reliability 99

To define in which states of the reachability graph the system is available and in
which states it is not, a so-called reward function is used. In Fig. the reward function
A evaluates to 1 if and only if there are at least K components in the place P1.

A = (#P1>=K1) AND (#P2>=K2)

P1: active P7: passive repair - p2: active
FOT1 MTTR1
failover
P9: idl
MTTF1 , . MTTR2|
/| failure repair | MTTR1 P6: in repair ;| failure
#P1 #P2
assign
repairman
assign
0 repairman| ©
P3: failed P5: in repair P4. failed

Fig. 16. Petri net of a system comprising 2 k-out-of-N:G subsystems with identical components.
All components are repaired by a repair-group with capacity R. One subsystem (modelled on
the left side of the net) is a standby-redundant system: passive components cannot fail and the
activation of a passive component takes some fail-over time (FOT).

Fig.[L6lshows a more complex Petri net modelling a system comprising two k-out-of-
N:G subsystems. All components are repaired by the same repair group with capacity R.
Thus, the number of components which can be repaired in parallel is limited by R. The
left k-out-of-N:G system is build using cold standby-components. This means that the
redundant components cannot fail. After the failure of an active component, a passive
component will be activated (due to the "inhibitor arc", the transition fail-over can only
fire if there are less than Ky components in the place active). This takes some fail-over
time (FOT) during which the overall system is not available.

Importance Measures: How Can I Find the Weak-Point?

Importance Measures are metrics which help to identify the weakest areas of a
system and moreover they do give hints to modifications, which will improve the sys-
tem reliability. Importance measures are useful as well by assisting system design
and optimization as by diagnosing failures, generating repair checklists and develop-
ment of inspection and maintenance strategies. Importance measures provide informa-
tion for making various decisions to improve the system reliability. It should be noted
that the application of importance analysis does not take the costs of all these events
into account.

100 I. Eusgeld et al.

At the first design phases usually only the structure of the system is known, but not
the component parameters (failure rate, repair rate, MTTF, etc., see Sect.[0.4). In some
cases the developer can start with the importance analysis. Components with very low
importance value will probably have a negligible effect on the system reliability. The
effort in finding the data only for the most important components helps to safe time and
costs.

The process of estimation of Importance Measures is also known as a sensitivity
analysis.

Importance measures are defined upon reliability models and are typically applied in
Fault Tree Analysis (see section before).

There are three principal factors that determine the importance of a component in a
system:

— Structure of the system.
— Location of the component in the system.
— Unreliability/unavailability of the component.

General: The higher an importance value of the component the bigger is its influence
on the system reliability. Importance measures provide numerical ranks based on the
contribution of the component to a system failure. In this section we summarize the
major importance measures proposed in the literature 156,380].

The most commonly used importance measure is due to Birnbaum (also called
marginal) importance. Birnbaum importance is the probability that the system is in such
a state that a basic event A; (component fails) is critical for the occurrence of the top
event (system fails). It can be obtained by the partial derivation of the unreliability sys-
tem function F'(q):

:3F(Q) 19

IB(A’L) aq) 5 Ly eney

n.
Birnbaum defined the importance of a component as the difference between two condi-
tional probabilities:

Ip(A;) = P(X/Ai) — P(X/A:),

where the first one is the probability, that the top event X has occurred, given that the
event A; , whose importance is being measured, has occurred. The second one is the
probability, that the top event X has occurred, given that the event has not occurred
A;. The Birnbaum importance measure determines the maximum increase in risk when
component A; has failed compared to the case where component A; is operating state.
Another view on Birnbaum importance is to see it as a rate at which the system relia-
bility improves as the reliability of component A; improves. The Birnbaum importance
measure plays an important role in defining and calculating several other importance
measures. In case no information is available about the components characteristics (un-
reliabilities / unavailabilities), then the Birnbaum importance measure can be computed
by setting event unreliabilities to 0.5, that allows us to consider the relative importance

Hardware Reliability 101

of various components when only the structure of the system is known. This importance
measure is known as Structural importance measure:

Isrr(4;) = Ip(A4;), where ¢; = 0.5.

The Structural importance establishes the probability of system failure due to a given
component when we consider that all states have the same probability.

The Birnbaum importance does not directly consider how likely an event A; is to
occur. This measure is independent of the actual unreliability of event A;, which can
result in assigning high importance measures to events that are very unlikely to occur.
To improve this, Criticality importance can be considered, which is the probability that
the component is responsible for the system failure before time t:

Ier(A;) = I5(A;) - F‘éq)

Therefore, the Criticality importance measure modifies the Birnbaum importance mea-
sure by adjusting for the relative probability of a basic event A; to reflect how likely the
event is to occur and how feasible it is to improve the event reliability. These modifica-
tions enable the Criticality importance measure to focus on truly important basic events
and make it possible to compare basic events between fault trees. Criticality importance
measure is typically used to determine the next basic event to improve. The Criticality
importance measure is defined as:

Ior(Ai) = {P(X/Ai) — P(X/Ai)} - P(Ai)/ P(X)

The Criticality importance measure of event A; is the probability that the top event has
occurred given that component is critical for the system and has occurred. While the
Birnbaum importance measure considers only the conditional probability that event A;
is critical, the Criticality importance measure also considers the overall probability of
the top event occurrence due to event A;.

If the objective is to minimise the individual contributions of basic events, then the
Fussell-Vesely importance measure should be used to select the basic event to improve.
In order for a basic event to contribute to the top event, at least one cut set (see sec-
tion before for the definition) containing this event should occur. The Fussell-Vesely
importance measure is the probability that at least one minimal cut set containing com-
ponent, whose importance is being measured,has failed at time t, given that the system
has failed at time t:

ooy = S F@
Fv(4;) =
Flg)

where F;(q) denotes the probability that minimal cut set j among those containing
component, whose importance is being measured, has failed at time t. In cases where
event A; contributes to the top event but is not necessarily critical, the Fussell-Vesely
importance measure can be used.

Each situation will dictate the appropriate measure to apply.

102 I. Eusgeld et al.

Importance Measures Usage [@]: If all importance measures yield the same rank
ordering of basic events, then the strategy for using the importance measures is straight-
forward. However, when the three importance measures yield different rank orderings
of basic events, the following guidelines suggest how to select an appropriate solution:

— If the decrease of the unavailability of each component is possible with the same
effort, then use Birnbaum importance measures.

— If improvements can be made only to events that have high unavailabilities, use
Criticality importance measures. (It may be impossible to de-crease the unavail-
ability of events after a certain limit, and the unavailability of some events may
already be very low.) Additionally, if the object is to prioritise maintenance efforts,
use Criticality importance measures.

— If the objective is to minimise the individual contributions of basic events, use
Fussell-Vesely importance measures.

The reader interested in learning more on novel techniques e.g. Fricks and Trivedi
] and further classical importance measures can be referred to Fussell] and
of Intellect in cooperation with Relex Software Corporation 1380].

Tool Support

Fault trees, Markov chains and stochastic Petri nets of non-trivial systems cannot be
analysed manually. Therefore, computer aided tools were created for model design and
solution. Most of these tools were written with a certain kind of modelling method in
mind. For instance, there exist a wider variety of tools for fault tree evaluation, Markov
chain analysis, or the transformation of Petri nets into the corresponding Markov chains
as well as other stochastic processes.

Some tools also combine several techniques in an integrated modelling environment.
This allows for using the outcome of one model type as an input for another model
type. Most tools also support the parametrisation of models and solving it with varying
parameters. Commercial tools also offer import and export features to combine and
support the file formats of standard office software packets.

More recently, some tools focus on disguising the complex evaluation process to the
users. For example, the tool OpenSESAME takes a collection of reliability block dia-
grams as its input. These diagrams are enriched with inter-component dependencies. As
traditional solution methods for reliability block diagrams cannot be applied to RBDs
with dependencies, OpenSESAME transforms the input model into a set of semantically
equivalent stochastic Petri nets. However, this transformation process is transparent to
the users, who must not be familiar with Petri nets or Markov chains. For more infor-
mation on OpenSESAME, the reader is referred to Walter and Schneeweiss].

9.6 Summary

The chapter “Hardware Reliability” addresses the issues quantitative evaluation, com-
mon measures and metrics, techniques for measurement and modeling of complex fault-
tolerant system. The first issue deals with the goals of reliability evaluation and the

Hardware Reliability 103

choice of appropriate reliability metrics. In the next section reliability terms are defined
with an emphasis on availability. Afterwards follows a discussion of the essential prob-
lem of properly collected data for further reliability analysis. The methods considered
include - among others - field data gathering, stress screening and fault injection. Field
data is used as an input for almost every physical reliability model such as the well-
known MIL-217. There are a couple of rule-of-thumb techniques that can be used to
estimate the relative reliability between different components such as the parts count,
power consumption, heat and more complex ones, e.g. the parts stress analysis. Where
field data is not available or fault-tolerance mechanisms aught to be validated, fault-
injection must be used. Fault-injection basics and multiple fault-injection tools are pre-
sented and categorized (software-implemented, physical, simulation-based). To test the
behavior of a system before delivery, stress screening is used during the manufactur-
ing process. The problem to deal with uncertain data is briefly sketched. The chapter
ends with a presentation of models for reliability metrics estimation. The described ap-
proaches include Fault Trees, Reliability Block Diagrams, Petri Nets, Sensitivity Anal-
ysis and Markov Chains.

10 Software Reliability

Irene Eusgeld', Falk Fraikin?, Matthias Rohr?, Felix Salfner?, and Ute Wappler®

! Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
2 Darmstadt University of Technology, Germany
3 University of Oldenburg, Germany
4 Humboldt University Berlin, Germany
5 Dresden University of Technology, Germany

Many concepts of software reliability engineering can be adapted from the older and
successful techniques of hardware reliability. However, this must be done with care,
since there are some fundamental differences in the nature of hardware and software
and its failure processes. This chapter gives an introduction into software reliability
metrics.

10.1 Introduction

Software reliability is often defined as “the probability of failure-free operation of
a computer program for a specified time in a specified environment.” [@, p. 15].
In this part, the three major classes of software reliability assessment are presented

(Section[T0.4):

Black box reliability analysis (P.[IT11): Estimation of the software reliability based on
failure observations from testing or operation. These approaches are called black
box approaches because internal details of the software are not considered.

Software metric based reliability analysis (P.[[13): Reliability evaluation based on the
static analysis of the software (e.g., lines of code, number of statements, complex-
ity) or its development process and conditions (e.g., developer experience, applied
testing methods).

Architecture-based reliability analysis (P.[[19): Evaluation of the software system re-
liability from software component reliabilities and the system architecture (the way
the system is composed out of the components). These approaches are sometimes
called component-based reliability estimation (CBRE), or grey or white box ap-
proaches.

Many concepts of software reliability engineering are adapted from the older and
successful techniques of hardware reliability. The application of hardware dependabil-
ity methods to software has to be done with care, since there are some fundamental
differences in the nature of hardware and software, and its failure processes. Therefore,
well-established hardware dependability concepts might perform differently (usually
not very well) for software. It was even proposed that “hardware-motivated measures
such as mttf, mtbf should not be used for software without justification” [@].

Today, software reliability engineering is a separate domain. Research on
software reliability measurement (e.g., the work of Cheung [@], Littlewood [@], and

I. Eusgeld, F.C. Freiling, and R. Reussner (Eds.): Dependability Metrics, LNCS 4909, pp. 104 2008.
(© Springer-Verlag Berlin Heidelberg 2008

Software Reliability 105

Musa et al.]) addressed the characteristics of software reliability and adapted
hardware reliability metrics. However, empirical evaluation is important before depend-
ability concepts, derived from hardware-approaches, can be applied to software. For
instance, such an empirical evaluation of component-based reliability estimation was
presented by Krishnamurthy and Mathur 284).

Despite major advantages, software reliability assessment (with models such as the
reliability growth models) is not powerful enough to address very high reliability de-
mands (such as 10~? of failure probability per hour) [@].

Software Faults Are Design Faults

The main difference between “hardware” and “software” failures is the underlying fault
model. Traditionally, the largest part of hardware failures is considered as result from
physical wearout or deterioration. Sooner or later, these natural faults [@], will intro-
duce faults into hardware components and hence lead to failures.

Experience has shown, that these physical effects are well-described by exponential
equations in the relation to time. Usage commonly accelerates the reliability decrease,
but even unused hardware deteriorates. Physical separation and fault isolation (e.g.,
high-impedance electrical connections and optical couplers, such as applied by Wens-
ley et al.]) made it possible to assume (approximately) statistical independence of
the failure processes (of natural faults). The fact that this so-called independence as-
sumption holds for physical faults, does not only highly reduce the complexity of the
reliability models. Moreover, it makes the use of redundancy very effective in the con-
text of hardware fault tolerance. Concepts, such as “hot” redundancy in combination
with voting, or standby redundancy (reconfiguration upon failure detection), made it
feasible to design systems with high hardware reliabilities.

Design faults are a different source for failures. They result mainly from human er-
ror in the development process or maintenance. Design faults will cause a failure under
certain circumstances. The probability of the activation of a design fault is typically
only usage dependent and time independent. By the increasing complexity of hardware
systems, design faults become more and more an issue for hardware reliability mea-
surement, so that “the division between hardware and software reliability is somewhat
artificial” , p- 38].

Software is pure design 1309] and consequently, software failures are caused by de-
sign faults [@i p. 38], [@, p- 71. Note, the term “design” is used in a broad sense
in software dependability and refers to all software development steps from the re-
quirements to realization , p- 48]. Therefore, faults that are introduced during the
implementation are also consided as design faults. In contrast to hardware, software can
be perfect (i.e. fault-free). Unfortunately, it is usually not feasible to develop complex
fault-free software, and even then, it is rarely feasible to guarantee that software is free
of faults. Some formal methods can prove the correctness of software - this means it
matches to a specification document. However, today’s formal verification techniques
are not designed for the application to large software systems such as consumer oper-
ation systems or word processors. Furthermore, correctness does not ensure reliability
because the specification document itself can already be faulty. As it is not feasible
to develop complex software systems free of faults and the absence of faults cannot

106 I. Eusgeld et al.

be guaranteed, the reliability of software needs to be evaluated in order to fullfill high
dependability requirements.

The failure process of design faults is different from the one of (“hardware”) natural
faults. Obviously, copies of (normal) software will fail together, if executed with the
same parameters. This shows that the independence assumption does not hold. More
precisely, the failure probabilities of software copies are completely dependent. This
makes many hardware fault tolerance principles ineffective for software. Instead of us-
ing redundant copies, software reliability can be improved by using design diversity. A
common approach for this is the so called N-version programming (surveyed in Avizie-
nis [Iﬁ], introduced by Chen and AviZienis [@]). However, the reseach of Knight and
Leveson [279] indicates, that design diversity is likely to be less effective for software
than N-modular redundancy is in hardware reliability engineering.

Some studies have shown that for complex systems, the majority of failures are typi-
cally caused by software faults (see, for example, Gray]). Although software faults
are design faults, their behaviour in dependable systems is similar to transient hardware
faults. This is due to the stochastic of their activation conditions].

Software Usage Profiles

Littlewood and Strigini [309] state that software reliability has to be a probabilistic mea-
sure because the failure process, i.e. the way faults become active and cause failures,
depends on the input sequence and operation conditions, and those cannot be predicted
with absolute certainty. Human behaviour introduces uncertainty and hence probabil-
ity into software reliability, although software usually fails in the same way for same
operational conditions and same parameters. An additional reason to claim a proba-
bilistic measure is that it is usually only possible to approximate the number of faults
of complex software system.

To issue different ways of usage, the concepts of user profiles [@] and operational
profiles [@,] are common for (black box or white box) software reliability mea-
surement. These models use probabilities to weight different ways of software usage.
Usage profiles can be used for hardware as well. For software designers, it is easy (and
often practice) to include “excessive extra functionality”]. From this point of view,
the weighting of service requests seems especially important for software.

Besides software usage, other context information might have to be included into
reliability assessment. This is required because software reliability is more sensitive
to differences in operational contexts than hardware reliability , p- 179]. In other
words, a piece of software that was reliable in one environment, might be very unreli-
able in a slightly different one.

10.2 Common Measures and Metrics: What Do I Measure?

Many software reliability metrics differ from hardware reliability metrics primarily in
the models that are used for the computation (Section [[0.4). Hardware reliability met-
rics are usually time dependent. Although the failure behavior of (software) design
faults depends on usage and not directly on time, software reliability is usually ex-
pressed in relation to time, as well. Only as intermediate result, some reliability models

Software Reliability 107

use time-independent metrics such as the reliabilities of paths, scenarios, or execution
runs. A major advantage of time dependent software reliability metrics is that they can
be combined with hardware reliability metrics to estimate the system reliabiliy ,
p- 229]. For the evaluation of software design alternatives, time independent reliability
metrics might be easier to compare.

For reasons of completeness, we repeat the relationships between the basic reliability
metrics from Musa et al. , p. 228] (as said before, these are very similar to the
hardware reliability metrics in Section[@.3] Page [63)):

Reliability R(t):
R(t)=1-F(t) ey
Failure probability F'(¢):
F(t) =1 - R(t) 2
Failure density f(¢) (for F'(t) differentiable):
dF(t)
t) = 3
=")
Hazard rate z(t) (also called conditional failure density):
ft)
1) = 4
Reliability R(t) (derived from the hazard rate):
t
R(t) = capl- [2(o)ds ©
0
Mean time to failure (MTTF) = © (with t as operating time):
MTTF =06 = / R(t)dt (6)
0

For clock time as approximation to execution time, M () presents the random pro-
cess of the number of failures experienced by time ¢, and m(t) denotes the realisa-
tion of M (t). The mean value function, which represents the expected number of
failures at time ¢ is given by:

u(t) = BIM (1))
Failure intensity function or failure rate function:

_ du(t)

A ="

(8)
Note that the term “failure intensity” is used as a synonym for “failure rate” by
foundational work in software reliability research (e.g., Musa et al.]). Musa
] states that the term “failure intensity” was chosen to avoid common confu-
sions between “failure rate” and “hazard rate”.

108 I. Eusgeld et al.

Other relations between hardware and software reliabilities are:

— The probability of failure per demand can be suitable for terminating software. It
is given by 1 — R, with R as the reliability of a single execution (192

— Availability related metrics such as downtime, uptime, or reboot time are more
related to combined hardware-software-systems.

— Terms such as “lifetime” are less common in the context of software reliability.

Dependability Benchmarks

Performance benchmarks such as SPEC have become a powerful tool to evaluate and
to compare performance of computer systems. This approach has not been adapted to
dependability aspects until recently. Silva and Madeira [448] give an overview on the
role of dependability benchmarks.

The objective of dependability benchmarks is to standardize ways how dependability
of computer systems can be assessed. Since it is difficult to objectify dependability eval-
uation, an important part of the benchmark developing process is to set up an evaluation
workflow that is accepted by a wide range of companies and customers of computer sys-
tems. Acceptance can be described by the attributes representativeness, usefulness and
agreement.

The principle structure of a dependability benchmark is shown in Figure [l In ad-
dition to a workload usually defined in performance benchmarks, there is a fault load
which is basically a set of faults and stressful conditions, and there are measures that
are related to dependability. The measurements of the benchmark can either be used
directly in order to compare different systems or it can be used as input for dependabil-
ity models (see Section[10.4) in order to derive dependability metrics that have a scope
beyond the benchmark’s measurements.

Workload ——»| System Measurements Measures
load under » conditional on
Faultload ———pmy (0 ok benchmark
\ 4
Hazardratess — ™ Measures
and other ———————————— ™ Model [— independent of
parameters benchmark

Fig. 1. Dependability Benchmarks

Silva and Madeira] also give references to dependability benchmarks that have
been published recently.

10.3 Techniques for Measurement: What Data Is Necessary?

Just as a reminder, the title’s question is worth repeating: What data is necessary? Data
should not be collected only because it can be done. This would be just wasteful. First

Software Reliability 109

of all a purpose, a goal should be defined that leads to questions that can be answered by
collecting data. One method to achieve this is the GQM method described in Chapter|[6l

The corresponding section on hardware reliability (s. Section [@.4) was divided into
subsections on field data and fault injection among others. For software those terms have
a slightly different meaning and significance. Furthermore, in the context of hardware
reliability modeling, research and practice focus almost only on data about observed
failures. For software the data used is much more diverse.

Program Size

Several models use the size or complexity of a program as input. A well-known met-
ric for measuring program size is the lines of code metric (LOC) which is deceivingly
simple. One problem with LOC is the ambiguity of the operational definition. Which
lines are to be counted? Surely executable lines are counted, but what about two exe-
cutable statements in one line? Lines containing data declarations only? Empty lines?
Comments? Obviously, this problem can and has to be handled by a clear definition of
LOC that is adhered to throughout the project.

Another problem is the obvious dependency of LOC on the programming language
used which is typically a disturbing property in this context. An alternative measure
for program size that abstracts from the programming language is the function point
(FP). Developed in the late 1970s by Albrecht [@] function points basically are a
weigted sum of the numbers of the following components of an application: exter-
nal inputs, external outputs, user inquiries, logical internal files, and external interface
files. This weighted sum is refined by the estimated complexity of those components
and furthermore by 14 weighted general system characteristics. As FPs thus rely much
more on the functional requirements of an application and not on the implementation,
FPs are much more useful for doing comparisons across different programming lan-
guages and also across different companies. A common metric involving FPs, e.g., is
“defects per FP”.

Test Phase

Data collected during the test phase is often used to estimate the number of software
faults remaining in a system which in turn often is used as input for reliability predic-
tion. This estimation can either be done by looking at the numbers (and the rate) of
faults found during testing [@] or just by looking at the effort that was spent on test-
ing. The underlying assumption when looking at testing effort is “more testing leads
to higher reliability”. For example, Nagappan et al.], Nagappan 13631, Nagappan
et al. [@] evaluated the following metrics (and more) in this context:

Number of test cases / source lines of code

Number of test cases / number of requirements

Test lines of code / sourcelines of code

Number of assertions / source lines of code

Number of test classes / number of source classes
Number of conditionals/ number of source lines of code
Number of lines of code / number of classes

110 I. Eusgeld et al.

Failure Data

Of course, information about observed failures can also be used for software reliability
assessment. Data collected includes, e.g., date of occurence, nature of failures, conse-
quences, fault types, and fault location 1.

In the case that field data is not available and testing does not yield a sufficient
amount of failure data, fault injection can be applied. An introduction is given in Chap-
ter[0.4] Fault models for software faults exist but are not as common as hardware fault
models, yet. A well-known example is Orthogonal Defect Classification (ODC) [@].
It divides software faults in six groups: assignment, checking, timing, algorithm, and
function. For emulation by an injector, these faults have to be “generated”, which means
that even if there is no fault in the code, the code is changed. For example, if a checking
fault should be generated, a check in the code could be changed such that a less-or-equal
check is replaced by a less check. When the running program reaches the particular lo-
cation in the code, a false check is performed resulting in a checking fault. Note, that
the goal of fault injection is to acquire data about failures — not the data about the fault
that was injected should be observed but the ability of the rest of the system to handle
the fault. An implementation of a software fault injector was described by Durdes and
Madeira [@,].

Another use case for software fault injection not directly related to reliability is the
assessment of test suites. The basic idea is to inject a number of faults into a system,
run the corresponding test suite, and use the percentage of injected faults detected by
the test suite as an indicator for the coverage achieved by the test suite.

10.4 Modeling: How Do I Model?

Although hardware and software reliability is similar, they have to deal with failure rates
of diverse characteristics. Under the assumption that the program code is not altered
and the usage profile stays constant, software lacks the typical wear-out phase where
failure rates rapidly increase after a long time of being quasi-constant (see Figure [in
Chapter Q). However, the assumption that the code stays the same for the lifetime of
a system does not hold. Typically, a software is under permanent development, testing
and bug fixing. This affects failure rates in several ways. Smaller updates reduce the
failure rate in most cases, except for those where the fix of one bug introduced others
increasing the failure rate. On the other hand, the majority of software offers major
updates from time to time that offer a bunch of new functionality introducing a lot of
code that shows high failure rates. This often leads to jumps in the overall failure rate.
Figure Dl sketches the effect.

A bunch of models have been developed trying to get a grip on the specifics of soft-
ware failure rates. Some of the models will be introduced in the following sections. They
are grouped by the amount of internal knowledge about the software and its structure.
Black box reliability models do not rely on internal specifics of the software. Another
group of models builds on software metrics such as complexity measures and a third
group analyzes the internal structure of the software under consideration.

Software Reliability 111

test/debug useful life obsolecence

Q Q

2 K| 2

8 & o 5

5 & =] o
= < =1

2 5

= o

:

P time

Fig. 2. A rough sketch of software failure rate over lifetime

Black Box Reliability Models

Software reliability estimation with black box models dates back to the year 1967 when
Hudson] modeled program errors as a stochastic birth and death process. In the
following years, a lot of models have been developed building on various stochastic
properties. In their book “Software Reliability”, Musa et al.] introduce a more
general formalism that is able to capture most of the models that have been published.
Farr] reiterates the overview of Musa et al.] but focuses more on the explicit
description of each of the reliability models. The classification scheme of Musa et al.
] groups software reliability models in terms of five attributes:

1. Time domain: Is the time base for the model calendar time or execution time?

2. Category: Is the number of failures that can be experienced in infinite time finite or
infinite?

3. Type: What is the distribution of the number of failures experienced by time ¢?

4. Class (for finite category only): What is the functional form of the failure intesity
in terms of time?

5. Family (for infinite category only): What is the functional form of the failure inten-
sity in terms of the expected number of failures experienced?

The objective of this section is to sketch the major attributes in order to give an impres-
sion what properties are addressed by the attributes. A small set of well-known models
will be described later in this section.

Time Domain. Musa] introduced a new notion of reliability modeling that was
based on a software’s execution time rather than calendar time. Times between failures
are expressed in terms of computational processing units aiming at incorporating the
stress induced on the software. Since execution time seems to be rather arbitrary for
project managers, Musa added a second model component that relates execution time
to calendar time by expenditures for human and computational resources.

Finite and Infinite Category. The category attribute classifies software reliability mod-
els according to the property whether the number of encountered failures tends to infin-
ity or not in infinite time. Sounding rather theoretical, it classifies whether the software
under consideration tends to be fault-free in infinite time or not. For example, if correc-
tion of a fault leads to other faults, the software may never be fault-free.

112 I. Eusgeld et al.

Poisson and Binomial Types. The distribution of the number of failures experienced
by time ¢ plays a major role in the classification of software reliabiliy models. The
following section discusses both types in more details.

Distribution Class and Family. Reliability models of the finite and infinite category
can each be subclassified according to the functional form of failure intensity model-
ing. Failure intensity is the number of failures per time unit. For models of the finite
category, the functional form of failure intensity is described in terms of time by a dis-
tribution of a certain class. As models of the infinite category require an description
of failure intensity in terms of the expected number of failures, it is described by a
distribution of a certain family.

The intention of this section is not to provide a comprehensive overview of existing
software reliability models but to sketch the basic ideas and to give some reference to
the most well-known models.

Poisson and Binomial Type Models. Musa et al. 1363] identified two types of models
that differ in the underlying failure process. Whereas binomial type models assume that
there is an initial number of faults u in the program, Poisson-type models assume the
initial number of faults to be a random variable with mean wg.

Binomial type models. Assume that there is a one-to-one correspondence between fault
and failure. After each failure, the causing fault is repaired instantaneously and repair is
perfect, which means that repair eliminates the problem and does not cause new ones.
This assumption leads to the notion that each fault in the software occurs exactly once
and that it is independent of other faults. It is assumed that each fault/failure occurs
randomly in time according to a per-fault hazard rate z,(t), which is assumed to be the
same for all faults.
Since the hazard rate is defined as

calty = Jald)

1= F(t))

where Fy, (t) is the cumulative distribution function of the random variable T, denoting
time to failure of fault a and f,(t) is its density. By solving the differential Equation 9]
we obtain

t
F.(t) =1—exp [—/ za(x)dx} (10)
0
By conditioning on time ¢’ we have
/ _Fa(t)_Fa(t/)_ /t
F,(t|t") = |~ By () =1—exp) za(x)dx (11)

The essential notion for binomial-type models is that due to the hazard rate, by time
t each fault a is removed with probability F, (¢) and remains in the software with prob-
ability 1 — F,(t). Since there are ug faults at ¢ = 0 the probability that m out of ug
faults are removed until time ¢ is the value of the binomial distribution

P[M(t) = m] = (Zj) [Fo]" 1-Ro]"" (12)

Software Reliability 113

This is why models building on the above assumptions are of binomial type.
In order to obtain an equation for reliability, we need to determine the probability

P[T; > t;|Ti—1 = t;—1] (13)

where T is the random variable of the time of ¢-th failure. It denotes the probability
that the next failure ¢ occurs at time ¢; given that the last occurred at ¢;_;. The fact that
1 — 1 failures have occurred implies that only ug — ¢ + 1 faults remain in the software
yielding:

PIT; > t;|Tioy = tiq] = [1 — Fu(ti|ti—1)]" ! (14)

Using Equation [Tl yields

t;
P[TZ > ti‘TZ‘,1 = ti,ﬂ = exp [—(UO — i+].)/
t

i—1

Za (ac)dac] (15)

Replacing the absolute time ¢; by the temporal difference 6¢;, which is the time from
failure ¢+ — 1 to failure ¢, we obtain an equation for reliability, that is dependent on the
number of remaining faults (ug — ¢ + 1) and the time of the last failure ¢;_1:

R(éti ‘tifl) = exp

ti_1+6t;
—(uo — i+ 1)/ za(m)dm] (16)

ti—1

If the hazard rate z,(¢) is constant then the integral and hence reliability are independent
of ti —1.

Poisson-type models. Assume that the initial number of faults in a software is not
known as is the case with binomial type models, but rather is a Poisson random vari-
able with mean wy. Therefore, u is being replaced by the random variable U(0) and
Equation[I2]is transformed into

r—m UJ(Q;

PIM(t) = m] = f: (”C) [Fa(t)]m [1 - Fa(t)] N exp(—wo) (D)

m
z=0

where the first part is the binomial distribution for an initial number of x faults and the
second part is the poisson distribution, yielding the probability that there are actually x
faults given the mean wy.

This equation can be transformed into

[WO Fa(t)]m

P[M(t)=m] = ml

exp|—wo Fy(t)] (18)
showing that the assumption of a Poisson distribution of the number of initial faults
leads to a Poisson distribution for the number of failures that have occurred until time
t, which equals the number of faults removed.

114 I. Eusgeld et al.

Comparison. The two types of models described above are obviously similar. Both
models assume that the hazard rate are the same for all faults. The Bayesian model of
Littlewood and Verrall (see below) gives up this assumption. Since for Poisson-type
models the number of failures is a random variable, they are able to accomodate, in
an approximate fashion, for imperfect debugging that eventually introduces new faults
during repair actions.

Having a closer look at the characteristics of the hazard rate of the entire program
(not to be mixed with hazard rate of the single faults), it can be observed that binomial-
type models have discontinuous program hazard rates. Each time a failure occurs it is
removed and the program hazard rate decreases discontinuously, which seems realistic
since the correction of a bug causes an immediate decrease. Poisson-type models do not
show this property. However, in a real environment failures are not repaired immediately
but at some random time after failure which is an argument in favour of the Poisson
approach.

Besides from the number of failures experienced until time ¢, which was denoted by
M (t), and reliability R(6t;|t;—1), other reliability metrics such as mean time to failure
(MTTF) can be derived from the stochastic process.

A Brief Overview of Existing Models. In the equations above, neither the fault hazard
rate z,(t) nor the distribution of the time to the next fault/failure f,(¢) and F, (t) respec-
tively, have been specified. This is where many of the models that have been proposed
differ. Since many of the models share assumptions about the characteristic of the haz-
ard rate, Musa et al. introduced the “class” attribute. For example, the models proposed
by Jelinski and Moranda] or Shooman] belong to the class of binomial type
models with exponential hazard rates while the model proposed by Schneidewind]
is a Poisson-type model with exponential hazard rates. Other classes include Weibull,
Pareto or gamma distributions.

One well-known model should not be forgotten, even if it leaves the sketched frame-
work in various ways: the model proposed by Littlewood and Verrall]. The authors
postulated that software reliability is correlated with the belief that a software works
correctly leading to the consequence that reliability changes even if no failure occurs.
Therefore, reliability increases within failure-free time intervalls and changes discon-
tinuously at the time of failure occurrence. The model incorporates both the case of fault
elimination and of introducing new faults. An additional assumption is that faults do not
have equal impact on system reliability since some are more likely to be executed than
others. Littlewood and Verrall use a Bayesian framework where the prior distribution
is determined by past data (e.g., from previous projects) and the posterior incorporates
past and current data. By this approach, both small updates including bug fixes as well
as major upgrades that most commonly introduce new bugs can be modeled. As might
have become visible, the model is very powerful covering a large variety of software
projects, however, it is quite complex and more difficult to apply.

Fitting Black Box Reliability Models to Measurement Data. Brocklehurst and Lit-
tlewood [[72] assessed the accuracy of some reliability models such as Jelinski-Moranda
or Littlewood-Verrall based on industrial datasets and observed that the reliability pre-
diction of the different models varied heavily. The authors also provided an overview

Software Reliability 115

of several techniques, how the divergence of predictions and real data can be measured.
The techniques will be reiterated shortly, here.

From test data, two sets of data need to be extracted: Time to next failure and the
model’s reliability predictions. A straightforward way of comparison would be to take
the predicted median time to failure and to count how many times the predicted median
time was larger than the real time to next failure. If this is the case in approximately
50% of all predictions, the prediction could be valued accurate in average.

A more sophisticated approach is to draw a u-plot and to assess predictive accuracy
in terms of divergence from the line of unit slope measured by, e.g., the Kolmogorov-
Smirnov distance, which is the maximum vertical distance between both lines. Since
the u-plot does not account for trends, a y-plot can be used instead of the u-plot.

The u-plot can be used to improve black box reliability models by fitting them to the
MTTF values that are observed for a running system. The approach is also presented
in Brocklehurst and Littlewood [Iﬂ]: For the time between two successive occurrences
of real failures, it is assumed that the cumulative reliability distribution estimated by
the model F(t) can be linearly transformed by G' such that G[F(t)] is equal to the true
cumulative reliability distribution F'(¢). Since G is also unknown, its estimate G* is
calculated by use of the u-plot obtained from previous observations: G* is the polygon
formed by successive u-plot steps. In Brocklehurst et al. [IE] the same authors propose
to replace the polygon by an SP-line yielding further improved prediction accuracy at
the cost of more complex computations.

Software Metric Based Reliability Models

The objective is to reason about residual fault frequencies or failure frequencies which
have to be expected when executing the software. Therefore, either static analysis of
software using metrics such as lines of code, number of statements, or metrics measur-
ing complexity can be used. On the other hand the development process and conditions
under which software was developed influence its quality and such can also be used to
estimate reliability.

Classification and Clustering Methods. The objective of classification methods is to
learn how to assign data items to predefined classes. Clustering is the organization of
data items into clusters based on similarity [248] without predefined classes.

A lot of research has been done and also is currently going on to investigate how clas-
sification and clustering methods can be used to assess the reliability of software and
also hardware. For example Zhong et al.] describes how semi-supervised cluster-
ing is used to identify software modules as either fault-prone or not fault-prone. Clas-
sification methods are also useful to assess system reliability, e.g., Karunanithi et al.

] use neural networks to predict the number of failures of a system after a given
execution time based on time series information.

All classification and clustering methods have in common that the used data items
are feature vectors x = (z1, ..., 2,) where x represents a single data item and every x;
with ¢ € [1..n] is one measurement describing the data item, e.g., one could measure
lines of code, number of methods and lines of comments for programs. This would
result in one feature vector for each program. In principle every measurement described
in Section[T0.3] can be used as input data.

116 I. Eusgeld et al.

The usual procedure is that a set of data items—called training data—is used to train
the clustering or classification algorithm. This phase is called training or learning phase
of the algorithm. Afterwards the algorithm can be used to classify new unclassified data
items, i.e., associate it with a class or cluster.

The literature distinguishes classification and clustering methods depending on the
information used to train the algorithm:

Unsupervised: All clustering methods use unsupervised learning. Apart from the data
collection and maybe depending on the algorithm the number K of clusters to be
formed no information is available [195]. This only allows the partioning into clus-
ters based on similarity and thus limits its usefulness for reliability assessment.
Because of this unsupervised learning clustering is also called unsupervised classi-
fication].

Supervised: Supervised learning is required for classification. A data collection with
additional knowledge about the data items, e.g., class labels is available for training.

Semi-supervised: A small amount of knowledge about the data collection is available,
e.g., labels for some data items. The available data is not representative and thus
cannot be used for a supervised algorithm 1195].

There exist numerous algorithms for classification and clustering. For an introduc-
tion to clustering algorithms have a look at Jain et al.]. The current research deal-
ing with classification of software or systems with respect to their reliability is using
artifical neural networks as classification method. These have the advantage that they
are able to develop the required model on their own in contrast to classical analytical
models which have to be parametrized depending on the solved problem]. This
parametrization is no trivial task. Karunanithi et al.] show that the neural nets
which result from the training process are more complex than the usually used analyt-
ical methods by means of number of required parameters. Thus neural networks are
easier to use and capture the problem complexity more accurate. For an introduction to
artifical neural networks use Anderson and McNeil [IE].

The most used approach for reliability assessement using classification is to take a
set of data items somehow describing a program or a part of hardware and to label these
data items with reliability information, e.g., number of residual faults or failure rates.
This data collection is used to train a classification algorithm which later on is used
to classify unknown software or hardware with respect to the used class labels. The
following research follows this principle: Karunanithi et al.], Karunanithi et al.
], Tian and Noore], Khoshgoftarr et al.], and Pai and Lin [@].

Karunanithi et al.], and Karunanithi et al.] were the first who used neural
networks to realize a reliability growth prediction. As a training set pairs of execution
times (input to the net) and observed fault counts (expected output) are used. These pairs
represent the complete failure history of a system since the beginning of its testing up
to some point. The trained net could be used to predict fault counts for future execu-
tions. Two types of prediction are distinguished: next-step and longterm prediction. The
first predicts the output for the next point in a time series and the second predicts fault
counts for some point in the future. Comparing the neural network approach to tradi-
tional analytical methods led to the observation that for longterm prediction the neural

Software Reliability 117

network approach resulted in significant better predictions and for next-step prediction
the results were insignificant less accurate.

Since these first approaches for reliability growth prediction many contributions in
this direction were done: Some of the newer papers dealing with reliability growth
prediction using neural networks are Tian and Noore], and Pai and Lin].

Neural networks could not only be used to predict failure/fault rates using time series
data. Khoshgoftarr et al.] used a collection of classical software metrics such as
number of lines of code, Halstead’s effort metric, or McCabe’s Cyclomatic complexity
to determine how many faults are contained in a program. Since this approach does not
consider environmental conditions such as problem complexity, and development en-
vironment the obtained results should be treated with caution (see Fenton and Ohlsson

159)).

The research described up to now uses supervised approaches for training the algo-
rithms. Since this requires extensive labeled data collection to train the algorithm cur-
rent research aims at using semi-supervised approaches. Seliya et al.] and Zhong
et al. [526] describe an approach which uses clustering methods to partition data col-
lections describing software modules. Afterwards an expert estimates for each cluster
if the described software modules are fault-prone or not fault-prone. The assumption is
that software modules within one cluster partition have similar properties with respect
to fault-proness.

Bayesian Belief Nets. Bayesian Belief Nets (BBNs) are an old concept for graphically
representing and reasoning about logical relationships between variables. It enables us
to handle the uncertainty in the dependency between these variables by using condi-
tional probabilities]. Reliability of software is mainly influenced by the quality of
its development process which is very difficult to judge objectively. Thus, it is not pos-
sible to determine its influence with certainty. Fenton and Ohlsson] showed that to
assess software quality more is required than using classical software metrics such as
lines of code. They proposed the usage of BBNSs to take further influences, e.g., quality
of the development process, into account ,]. Prinicpially, BBNs are also usable
for assessing reliability of hardware. But since design faults are not the major issue with
hardware, they are rarely used in this context.

Furthermore, BBNs are usable when other reliability prediction methods are not,
because not enough data is available. For example in safety critical systems usually
reliability growth models are not applicable, because the number of observed failures is
far too low].

A BBN is a directed acyclic graph. Every node represents a discrete random vari-
able,i.e. the predicate or statement which is represented by this variable is true or false
with a certain probability. Edges represent causal dependencies between variables. For
an example have a look at Figure 3

Nodes which have only outgoing edges and no incoming ones are called root nodes.
The variable represented by a root node is not influenced by any other variable. Nodes
at the end of an outgoing edge are called children and the nodes with outgoing edges
are parent nodes. The meaning is that children somehow depend on their parents. How
a variable depends on other variables is determined by conditional probabilities. Every
node with incoming edges has a node probability table (NPT) assigned to it. This table

118 I. Eusgeld et al.

Fig. 3. Sample BBN [447]

contains conditional probabilities determining how a child depends on its parents. Root
nodes are just assigned the probability for being true. Obviously, the probability for
being false is the negation of the probability to be true.

1

2.

To construct a BBN requires three stages [447]:

. Problem structuring: In this step relevant variables are identified and the network

structure is determined, i.e., the dependencies between the variables.
Instantiation: After defining the structure of the net, the probabilities have to be
assigned. These may be derived from collected data or elicited from experts. For
reliability predictions both is done. Amasaki et al. [17] extract the used probabilities
from collected data, whereas Sigurdsson et al. [@] and Bouissou et al. [Iﬂ] use
expert knowledge.

. Inference: In this step the net is evaluated using the baseyian theorm and theory

of conditional probabilities. Known evidence about the state of variables is used to
update the probabilities of the other variables and thus make statements about the
probabilities of these variables becoming true or false. For example if we know that
code reviews were made the probability that the software has no residual faults will
increase. This statements are possible without using BBNs, but using BBNs makes
them quantifiable, describes them more formal and prevents fallacies in reasoning
due to misunderstanding of probability theory].

The main objective of BBNs is a what-if-analysis. On the one hand one can en-

ter observed evidence, e.g., which tools are really used to improve design quality, and
determine probabilities for all variables depending on this evidence. One of these vari-
ables usually will describe the reliability of the developed software, e.g. a predicate
residualFaultsExist. This type of evaluation is called forward propagation.

On the other hand one could determine how big the influence of some variables

onto others is. Thus, one can determine the benefit of methods such as code reviews

or

applied development models and use this knowledge to decide which methods are

benefical and which not. This is called backward propagation since one first assumes
that a reliable software was developed and with this evidence the conditional probability

Software Reliability 119

p(reliableSoftware|code Review) can be computed,i.e. one goes from the dependen
child node to its parent.

In reliability assessment BBNs are mostly used to model subjective knowledge about
environmental conditions such as used development methods and tools, experience of
developers and so on. For the first time this was done by Fenton and Neil [ﬁ, [158]

Advantages of BBNs in general are [447]:

Easy to understand graphical representation.
Combination of separate evidence sources.
Easy to use.

Takes uncertainty into account.

Explicit modeling of dependencies.

In comparison to fault trees BBNs allow easier use of multistate variables, can model
the undertainty in noisy gates and can capture sequentially dependent failures. In com-
parison to reliability block diagrams with BBNs common-cause failures can be modeled
more naturally 1.

BBNSs can also be used to complement already used mechanisms for predicting re-
liability. Amasaki et al. [Iﬁ] observed that software reliability growth prediction some-
times predicts that a software is reliable, i.e. has few enough residual faults, for software
which has no good quality at all. Thus, they proposed a solution where BBNs comple-
ment software reliability growth prediction by determining the probability that a soft-
ware can be of high quality. For building the BBN the following data is used: product
size, effort in the sense of person-day, detected faults, and residual faults.

For a deeper introduction into the theoretical foundations of BBNs refer to Pearl
[@]. For learning how to use BBNs practically have a look at Jensen]. Bouissou
et al. [|1_1|] gives a short less abstract introduction. Sigurdsson et al. [@] summarizes
current work about using BBNSs to represent expert knowledge in reliability assessment.
The paper also gives advice how to obtain this expert knowledge.

Architecture-Based Reliability Models (White Box)

This subsection presents the basic approaches for reliability prediction of component-
based software systems. Large software systems are often composed from smaller
blocks that bundle functionality. In architecture-based reliability prediction, these
blocks are named components. Without the need to refer to a special definition, com-
ponents are just considered as basic entities of the software architecture. The archi-
tectural reliability models allow to predict the system reliability from the software ar-
chitecture (containing components and connections between them) and the component
reliability data.

The black box approaches, summarized above measure the reliability of a piece of
software only based on observations from the outside. Intuitively, some software quality
attributes, such as performance or reliability are compositional - the quality of a larger
system seems to be derived from the quality of smaller parts and their relationship to
each other. Architecture-based approaches follow this intuition by looking at the coarse-
grained inner structure of software to measure the reliability.

120 I. Eusgeld et al.

A major advantage of architectural reliability (or performance) prediction approaches
is that it is possible to predict the system reliability already early during the software
design phase [M]. Failure data of the composed system is not required, as it is the case
for the black box approaches. Therefore, potential quality problems might be discovered
before a running system or prototype is implemented and black box approaches could
be used.

The independence assumption is a major assumptions in reliability engineering. In
the context of architectural reliability models, it assumes that the component reliabili-
ties (as probability) are statistically independent. This allows to compute the reliability
of a sequence of components as product of the component reliability. The independence
assumption can lead to overly pessimistic reliability estimates, when the same compo-
nents are executed multiple times in (large) loops.

The reuse of software components can affect the system reliability in both directions.
Reuse of components plays a major role in making software development more effec-
tive. It is hoped to reduce development time and costs by reusing already developed and
tested components. Reusing components can have a positive effect on the reliability of
composite system because the components have already been part of a software product
and taken part in its associated reliability growth. Therefore, the remaining number of
failures might be smaller than that of newly developed components. However, reusing
components can also be a reliability risk when some implicit assumptions about op-
eration are not documented or ignored during reuse. As stated before, software (and
therefore software components) is more sensitive to changes in their operational envi-
ronment than hardware]. Software that has shown good reliability before, might
perform bad in a slightly different context.

The following subsections are intended to provide a first idea on how the reliability
of component-based software systems can be predicted, and which data is required.
Surveys on architectural software reliability models have been published by Goseva-
Popstojanova and Trivedi] and by Dimov and Punnekkat], focusing on the
analysis of some more recent approaches. We limit this overview to provide simple
examples for the three major classes, and describe only major conceptual extensions of
later approaches.

We follow the structure of GoSeva-Popstojanova and Trivedi (192, that distinguishes
between three different classes of architecture based reliability models based on the way
of combining the failure behaviour and the software architecture: state-based, path-
based, or additive (using component reliabilities, omitting the architecture).

State-based Models. State-based approaches use probabilistic state representations,
such as Markov chains, to model the transfer of control between components.

The early approach (for not continuously running applications) by Cheung 193, loq]
uses a discrete time Markov chain (DTMC). It is created from a directed graph that
represents the control flow between the software components. Without the loss of gen-
erality, IV, is the single entry node and NV, is the single exit node. Matrix P contains
the probabilities F; ; as possible transfer of control from node IV; to N;.

As next step, the two absorbing states C' and F' are added, representing the states of
correct and incorrect system output. This leads to a the set of nodes {C, F, Ny, ..., N, }.
Absorbing states have no outgoing transitions to other states.

Software Reliability 121

Matrix P is derived from P with P(i, j) by including the probability R; that a com-
ponent ¢ produces the correct result. As shown in Figure[I0.4] direct transfers of control
from a component back to itself are not allowed (except for C' and F'). Furthermore,
N (as start state) has no ingoing transactions, and when N,, is reached, there are no
transfers of control back to the other nodes (except to C' and F).

c F N N, .. N ... N,
c 1 0 0 0 0
F 0 1 0 0 .. 0 . 0
Ny 0 1— R 0 R; Pio R1P1j R1Pin
N; 0 1—R; 0 R; Pis . R—L'Pz‘j A R; P;p,
Nn—l 01— Rn—l 0 Rn—lp(n—l)Q e Rn—IP(n—l)j fee Rn—lp(n—l)n
N, R, 1-R, 0 0 e 0 . 0

Fig.4. Structure of the matrix P [@] as Markov model representation of correct transfer of
control between components

P(i,7) represents only a single correct step in a execution sequence. The Markov
Model has the nice property that pn (i, j) denotes the probability of reaching the states
j € {C, F} within n steps. Therefore, P" (N, C) is the probability of correct termina-
tion in n or less steps.

Let the reduced matrix) be created from P by removing the states C' and F. The
overall system reliability R is computed by

oo

R=S(I,n)R, with S =TI+ Q+Q*+--- =) =(I-Q)" (19

k=0

A variety of similar state-based models have been presented for terminating applica-
tions:

The model of Kubat] uses task-dependend reliabilities for each component.
These are derived from probabilistic component execution times. The component
reliabilities are exponentially distributed with a constant failure rate.

— The failure rates in Gokhale et al. [@]’s model are time-dependent. Instead of
using tasks (as Kubat [@]), different utilisation is modeled though the cumulative
expected time spent in the component per execution.

— Hamlet et al. [Iﬁ] use so-called input profiles as reliability parameter for each
component. The input profiles are used to compute output profiles, which might be
the input profiles for other components of the architecture.

— A similar parametrisation of usage is applied in the model of Reussner et al. [414],

which computes the component reliability as a function of the usage profile. In

addition, it enhances the approach of Hamlet et al. 207] by applying the idea of

122 I. Eusgeld et al.

parametrized contracts], which addresses the problem that functional and non-
functional component properties highly depend on conditions of the deployment
context. This idea is realized by making the properties of the services required (in
the deployment context) a parameter of the component reliability function.

The reliability prediction of continuously running applications uses slightly different
models. The required types of data are the exact or approximate distributions of the
number of failures N (¢) in time interval (0, ¢], the waiting time to first failure, and the
failure rate [192]. The major approaches can be summarized as follows:

— Littlewood [IE] models the architecture with an irreducible continuous time
Markov chain (CTMC). A Poisson process predicts the occurrence of failures in
the components using a constant failure rate.

— Ledoux [@] adds a second failure behaviour model to Laprie [@]’s approach.
In addition to the failure behaviour model that assumes instantaneously restart, the
second one addresses recovery times by delaying the execution for some time.

— Littlewood [@] generalises the earlier approach Littlewood] by characteris-
ing the system by an irreducible semi-Markov process (SMP).

Path-based Models. Path-based models abstract modularised system as paths. A path
is understood as (mostly independent) sequence of components or statements.

Shooman [m] consider a path as a black box. This means that only f; as the relative
frequency of the execution of a path ¢ of k total paths, and g; as the probability of failure
for a path are required. The number of failures to expect ny in N system executions (=
path runs) is given by

k
ng=Nfig+ Nfaga+...+ Nfsar =N Y _ figi (20)
i=1

For the number of paths IV approaching infinity, the probability of failure of a execution
run is given by
k
.
=1 = i 21
Qo= lm o Z; fiq 2n

Given the execution time ¢;, assuming a rectangular time to failure distribution for a
path (¢;/2 hours in average), the average system failure rate z is computed as

_ Siife o
S A=t S (=t

A similar path-based approach is presented and evaluated in Krishnamurthy and
Mathur [284]. The concept of operational profiles [360] is used to generate a represen-
tative set of test cases 7. This moves the weighting of b (f; in the approach presented
above) into an earlier step. The system reliability R can be computed as

o ZVteT Ry

R= , 23
7| (23)

20 (22)

where the reliability R of the path ¢ is given by

Software Reliability 123

R= [Bm (24)

VmeM(t)

R,,, denotes the reliability of a component m. M (¢) is the component trace of the test
case t. A component trace can contain multiple invocations of the same component.

Krishnamurthy and Mathur [284] evaluate the problem of intra-component depen-
dencies, which is the dependency between multiple invocations of the same compo-
nent. The authors use an approach to “collapse” multiple occurrences of a component
in a trace to a lower number. The degree of this process is referred as degree of inde-
pendence. A DOI of co means that no collapse is done at all. The DOI decreases the
maximum number of component occurrences in component trace to k. For instance,
the component trace ¢ containing n executions of component j, the path reliability
would be

Rt — Rmin(7z,DOI) (25)

c J

The work of Cortellessa et al.] is similar to the path-based approaches. Scenario-
dependent component failure probabilities are derived from annotated UML Use-Case
Diagrams and UML Sequence Diagrams. Component and connector failure rates are
assumed to be known. The annotations of UML Deployment Diagrams allow the com-
putation of component interactions probabilities between components in different de-
ployment contexts. The failure probability of components and the one of the connectors
failure probability are combined to determine the reliability of the whole system.

Additive Approaches. According to the characterisation of Goseva-Popstojanova and
Trivedi], additive approaches are not explicitly using the software architecture, but
still base the computation on component failure data. It is assumed that the component
reliabilities can be modeled as nonhomogeneous Poisson Process (NHPP). Thus, the
times between the occurrence of component failures are independent. The presented
models combine the NHPPs of the components to a single NHPP for the system.

Assuming parallel component testing, Xie and Wohlin] estimate component
reliabilities from component failure data (from independent testing). As the system is
considered as a series system, every component failure leads to a system failure. This
is a pessimistic assumption for fault tolerant system designs, because these might not
show a system failure for every component failure. An other major assumption of addi-
tive models requires that the time ¢ is set to zero for all components at the same time.
This requires the introduction of the components at the same time point. This assump-
tion allows to compute the system failure rate As(¢) at time ¢ simply by summing up the
subsystem (component) failure rates \;(t)

As(8) = A1 (1) + Aa(t) + .+ An(d). (26)

The corresponding cumulative number of system failures p4(¢) (also known as mean
value function) at time ¢ is

pst) = 3 uilt) = /0 (D Ai(s))ds. 27)

124 I. Eusgeld et al.

A similar approach is presented by Everett]. It is argued, that the approach can
be used before the system testing starts, because system failure data is not required for
first predictions. Everett’s model] differs from Xie and Wohlin] in determin-
ing the component reliabilities by an approach called Extended Execution Time (EET)
model (see Everett [Iﬂ]). The EET is in parts identical to Musa et al.]’s Basic
Execution Time (BET) model. Both estimate component reliabilities from product and
process properties such as the fault-density (e.g., estimated from earlier projects), lines
of code, and other program and performance metrics. The EET extends the BET in
using an additional parameter for modelling varying probabilities for the execution of
instructions. For certain parameter values, the EET (and the BET) is a NHPP to model
failure occurrence. This simplifies the computation, because the NHPP model allows to
compute the cumulative failure rate function as sum of the corresponding component
functions (as in Xie and Wohlin [[514]’s Equations 26 and 27).

10.5 Proactive Schemes

In 1995, a new dependability technique called “rejuvenation” attracted attention, which
is essentially a special preventive maintenance technique that tries to set components
back to a “healthy”, “young” state before they fail]. This approach differs from
traditional fault tolerance techniques in that the system is not reacting to faults that
have occurred but rather is trying to proactively deal with them, and it differs from tra-
ditional preventive maintenance approaches where maintenance implies manual check
or replacement of field replaceable units. In the early 2000s, after publication of articles
by Tennenhouse] and the autonomic computing manifesto by Horn], the new
direction of proactive dependable computing gained importance.

In contrast to the attention that the topic attracted in terms of technical implementa-
tion, it is not thoroughly covered by dependability metrics. One exception is Garg et al.
] where the authors modeled a system with rejuvenation by a Markov Regenerative
Stochastic Petri Net (MRSPN) and solve it by use of a Markov Regenerative Process
(MRGP) yielding the probability of being in an unavailable state. In 2005, Salfner and
Malek] proposed a more general method to assess availability of systems employ-
ing proactive fault handling schemes. The proposed approach divides proactive fault
handling into two parts: the prediction of upcoming failures and the action that the sys-
tem performs upon prediction in order to deal with the fault. Two types of actions can
be identified: Preventive actions try to prevent the occurrence of failures but also tradi-
tional repair actions can benefit from failure prediction by preparing for the upcoming
failure in order to reduce time to repair. The accuracy of failure prediction, the effec-
tiveness of countermeasures and the risk of introducing additional failures that would
not have occurred without proactive fault handling are taken into account in order to
compute the change in availability. However, the paper presented only a formula for
steady-state availability. Metrics or models that cover other dependability metrics such
as reliability are not available, yet.

Software Reliability 125
10.6 Summary

This chapter covers dependability metrics that refer to software reliability. Although
software and hardware reliability are related, several characteristics in which they dif-
fer are identified and discussed. Following the “goal-question-metric” paradigm, proper
data collection is addressed including issues of testing, failure data and program at-
tributes. The main focus is on models for software reliability assessment; the approaches
are presented include black-box reliability models, reliability models that are based on
other software metrics and white-box reliability models that build on knowledge about
the internal structure of the system. For each group several models are described and
compared. A brief survey on proactive schemes concludes the chapter.

Part 111

Security Metrics

11 Introduction to Security Metrics

Felix C. Freiling

University of Mannheim, Germany

In one of his well-readable and instructively provocative newsletters [434], Bruce
Schneier elaborates on the role of the insurance industry within the field of network
security. He argues that eventually the insurance industry will run the computer secu-
rity just like any other field which has risks: If you want to protect yourself from the
damage caused by denial-of-service, simply buy insurance against this kind of attack.

Obviously, that article is very polemic. Schneier addresses two common objections
from the security field: First, that it is impossible to calculate the premiums because
it is hard to calculate the probability of an attack. Second, that large scale attacks,
e.g. viruses, lack failure independence. These objections are blown away by the ar-
gument that insurance companies are able to “insure satellite launches and the palate of
wine critic Robert Parker” [434]. So eventually, this will be no problem. But why is it
a problem and probably will be for some time in the future? The core of this question
boils down to whether or not it is possible to come up with meaningful ways to measure
security. The following part of this book contains a collection of articles that survey the
state of the art in security measurement.

Security is only a recent addition to dependability attributes which were discussed
in the beginning of this book. In the orginal work edited by Laprie 2931, security was
treated only on roughly half a page (out of 40). However, security has gained impor-
tance and managed to get into the title of the 2004 revision of Laprie’s work by AviZienis
et al. [@]. There, security is defined as the combination of three attributes: confiden-
tiality, integrity, and availability. This combination, sometimes referred to as the “CIA
taxonomy” seems to have its origin in a paper by Voydock and Kent [493] and later ap-
peared very prominently in the harmonized IT security criteria of France, Germany, the
Netherlands, and the United Kingdom which are known as “ITSEC”]. If we want
to measure security, the CIA taxonomy tells us that we should measure confidentiality,
integrity and availability. But from a practical viewpoint, security is more than just CIA:
Security is a continued effort to contain risk. To speak again with Schneier: Security is
a process [432]. So if we want to measure security, we must measure in some way an
organizational process.

In the following chapters we will see that many aspects of security interact: On the
one hand, there are “hard” and objective measurements of restricted aspects of security
as defined by the CIA taxonomy. For example, the notion of availability can be adapted
from the notion with the same name from the area of reliability, i.e., the probability
of delivering service at some time ¢ (see Chapter 9). On the other hand, due to the
complexity of organizations which must be assessed regarding their security, there are
also “soft” and subjective measurements. These measurements often take seemingly
hard measurements as input. But equally, available resources for security which are
often determined by “soft” factors often influence the amount of effort spent on “hard”
measurements.

1. Eusgeld, F.C. Freiling, and R. Reussner (Eds.): Dependability Metrics, LNCS 4909, pp. 129 2008.
(© Springer-Verlag Berlin Heidelberg 2008

130 F.C. Freiling

The field of security metrics is academically old which can be seen from the amount
of research invested in measuring the strength of cryptographic systems (see Chap-
ter 12). Looking at metrics for operational security, Littlewood et al.] in a classic
paper investigate the relations between reliability metrics and security metrics. They
pose many questions which are still relevant and unanswered today, for example, how
well can probabilities express the uncertainty about the security of a system? The area
of intrusion tolerance today has revived the area relating reliability/fault-tolerance and
security: It tries to carry established fault-tolerance methods over to the area of security.
This starts with assimilating the relevant terminology (faults are extended to attacks, er-
rors are intrusions, as in the AVI model of the MAFTIA project]). But there are
also fundamental differences, which were already observed by Littlewood et al. 3110:
While it is feasible to estimate the failure rate of a hardware component, it is hard to
estimate the probability that a system will be attacked in the future. These issues were
also discussed at a Dagstuhl seminar in 2006 [@] entitled “From Security to Depend-
ability”. Overall, measuring security seems to be more similar to measuring software
reliability (see Chapter 10). Here many open questions remain and we have collected
the research literature on the similarities and differences between reliability and security
in an annotated bibliography in Chapter 25.

Hard quantitative metrics have only been defined for restricted areas of security
(small components, protocols etc. and restrictive assumptions on the attacker) and they
are always “looking into the past” (see for example Chapter 12 on metrics for cryp-
tographic systems or Chapter 13 on metrics for malicious network traffic). A notable
exception is work by Jonsson and Olovsson] which evaluates student “hacking”
experiments and looks for patterns in the attack data. For larger entities like organiza-
tions best practices approaches dominate which we report on as qualitative metrics (see
Chapters 14 and 15). They usually give limited confidence in predictions. Some authors,
like McHugh 1344] and again Schneier [433)], are very sceptical whether it is possible
to give any meaningful predictive measures for security at all. The only predictive se-
curity metrics which are surveyed in this part of the book are economic (market-based)
metrics (see Chapter 15).

Today, practical considerations dominate security metrics research: Computer secu-
rity is a giant market estimated to around $ 40 billion, half of which is in the U.S. l474].
Companies need ways to estimate the security of their products, their computer net-
works and their organizations and so the area is currently driven by efforts which have
direct industrial benefit ,]. However, efforts like the security metrics consortium

were announced early 2004 but have vanished from the web at time of writing.

We are only aware of a couple of academic events which have focused primarily on
security metrics:

— The first seems to have been a workshop called NIST CSSPAB workshop on security
metrics] which was hosted jointly by NIST and the Computer System Secu-
rity and Privacy Advisory Board in June 2000 in Gaithersburg, MD, USA. While
its website seems to be offline, the papers are still available through the Internet
Archive.

— Often considered the first event, the Workshop on Information Security System
Scoring and Ranking was held on March 21-23, 2001 in Williamsburg, Virginia,

Introduction to Security Metrics 131

USA. The event was sponsored by the Applied Computer Security Associates and
the MITRE Corporation and the proceedings, a collection of position papers, were
published online [@]. The conclusions of the workshop, as published on the work-
shop homepage [21], state that it will probably always be necessary to combine
multiple measures to assess the security of a system and that more research is
needed in this area. We are unaware of any followup event of this workshop.

The Workshop on Security Metrics (MetriCon) has seen two iterations. The first was
held on August 1, 2006 co-located with the 15th USENIX Security Symposium in
Vancouver, B.C., Canada. There were no formal proceedings but presentations as
well as extensive notes are available online]. Similarly, the second workshop
of this series held in Boston, MA in August 2007 has its collection of material
online].

The Workshop on Quality of Protection (QoP) goes in its second iteration in asso-
ciation with the ACM CCS 2006 security conference in Alexandria, VA, USA. The
1st QoP workshop was held in Milano in September 2005 and was affiliated with the
10th European Symposium on Research in Computer Security (ESORICS 2005) and
the 11th IEEE International Software Metrics Symposium (METRICS 2005).

Most of these events have been dominated by industrial participants and views. This
could be interpreted as lack of academic interest in this area.

The following part of this book surveys the state of the art in security metrics and is
structured on the one hand historically and on the other hand with increasing level of
abstraction:

Chapter 12 starts with an overview of metrics for cryptographic systems.

Chapter 13 looks at approaches to measure malicious network traffic and the qual-
ity of intrusion detection systems. Measurement is used here as a means to detect
malice.

Chapter 14 surveys the large body of work in the area of security standards, best-
practice and risk management approaches.

Chapter 15 looks at economic measures of security. This covers measures to justify
security investment like the well-known return on security investment (ROSI) as
well as new streams of work in market-based metrics like vulnerability markets.
As mentioned above, these metrics are currently the only mechanisms that have the
potential to look into the future.

Finally, Chapter 16 surveys metrics in the area of human factors, i.e., how to mea-
sure security knowledge and security awareness.

The contributions of this part cover a wide spectrum of security metrics. But since the
individual chapters cover only the interests of the respective contributors, not the entire
field has been covered. Here are some of the fields which deserve separate surveys in
future work:

The emerging area of security testing is only covered briefly in Chapter 14. Its
relation to the area of software testing is still rather unclear and deserved special
attention.

Metrics for anonymity (like the anonymity set size) and unlinkability in privacy
enhancing techniques have not been covered allthough there is a substantial body
of work in this area.

132 F.C. Freiling

— Similarly, metrics for information hiding like detectability (in stegoanography), dis-
tortion measures and complexity of attack (in digital watermarking), or likelihood
of false framing (in biometric fingerprinting) have not been covered.

Work in these and other areas should be considered as contributions in future revisions
of this volume.

As a final note, the economic emphasis in large parts of this part of the book mirrors
the importance of security metrics in practice: The decision to dedicate entire sections to
security metrics in business and economics is justified by the fact that organisations of
any kind demand tools to quantify the security properties of their information systems.
Both profit-oriented companies and publicly funded institutions need valid indicators
for their decision of optimal resource allocation in security technology. The existence
of valid and comparable measurements for security is thus a prerequisite for responsible
decision-making in a cyber-world. The value of each security metric is, apart from
academic beauty, eventually defined by its capability of supporting business decisions
and containing risks, be it with participation of the insurance industry or not.

Acknowledgment

The authors of this part wish to thank Hanno Langweg for helpful comments.

12 Cryptographic Attack Metrics

Zinaida Benenson!, Ulrich Kiihn?, and Stefan Lucks?®

! University of Mannheim, Germany
2 Sirrix AG security technologies, Germany
3 Bauhaus-Universitit Weimar, Germany

When evaluating systems containing cryptographic components, the question arises
how to measure the security provided by the cryptography included in the system. In
this chapter we highlight the difficulties involved and show that, while measuring cryp-
tographic security is desirable, the opposite point of view, i.e. measuring cryptographic
insecurity using attack metrics, yields useful results and behaves reasonably under com-
position of cryptographic components.

12.1 Introduction

This chapter is concerned with the difficulty of measuring the security of cryptographic
protocols and of the primitives these protocols are based on. Examples for such prim-
itives include hash functions, symmetric and asymmetric encryption algorithms, mes-
sage authentication codes, digital signatures, and cryptographic pseudo-random number
generators. Cryptographic protocols typically involve communication between two or
more entities in order to achieve a particular security goal. For example, the goal of
key establishment protocols is to make a secret key available to all participants while
keeping it secret from any adversaries.

Any computer system which incorporates security mechanisms, such as password-
based access control, authentication with public key certificates, or protection of data
sent over a public network by encryption and authentication, implements and com-
bines cryptographic primitives and protocols. In practice, it is often of interest to know
the security properties of such a system, which involves rather complex concepts and
notions.

Thus, typically, security experts are asked the much simpler and straight-forward
question whether a given system is secure, or which level of security it can achieve,
or, formulated in a third way, how much security the system provides. At first sight
these are reasonable questions to ask. However, having a closer look, there are severe
problems involved.

In particular, the underlying assumption of such questions is that there is a usable
metric that can measure the security of a system quantitatively on a one-dimensional
axis. However, although rare attempts at developing such a cryptographic metric have
been made (see, e.g. Jorstad and Smith]), cryptographic research is very far from
defining it, and it is not clear whether this can be done at all.

In the following, we will see that there is no simple answer, and, in fact, we argue that
these questions are asking for the wrong thing, that these questions are too simplistic
and miss the point.

I. Eusgeld, F.C. Freiling, and R. Reussner (Eds.): Dependability Metrics, LNCS 4909, pp. 133 2008.
(© Springer-Verlag Berlin Heidelberg 2008

134 7. Benenson, U. Kiihn, and S. Lucks

Chapter Outline. In the remainder of this chapter we will explain why the simple way
to ask the security question leads up a dangerous path to false positives, such that an
insecure system is identified as secure. Instead, we propose metrics for the insecurity
of systems, which are safer to use. We call such metrics attack metrics. Later, we will
show an example based on key lengths, and touch the area of provable security, which
is an area of active research and therefore still evolving.

12.2 Asking the Security Question the Wrong Way

To understand why the frequently asked general questions such as “Is this system
secure?” or “How secure is this system?” are too simplistic and miss the point, we
start with an example. Assume that a system is using a good block cipher like AES
(Advanced Encryption Standard) in CBC mode to encrypt some information, e.g. for
transmission or storage. Further, assume that all the details of key generation, key man-
agement as well as generation of the initialisation vector necessary for CBC mode are
handled with state-of-the-art methods.

Coming back to the question “Is such a system secure?”, we notice that this question
lacks one important detail: secure against what? Essentially, the threats against which
the system should protect are left out. However, in order to obtain a meaningful answer
these threats must be implicitly or explicitly understood.

At a first look, one would be tempted to implicitly add “against any reasonable
threat”. However, this is a not a well-defined notion, as can be easily seen by con-
sidering again the example above.

In the example, the privacy of the data is protected by state-of-the-art methods. Nev-
ertheless, a common misunderstanding is to assume that this also protects the authentic-
ity (integrity) of the data. The false reasoning behind this is “It is encrypted, so it cannot
be changed”. Integrity protection here means that unauthorised changes will be discov-
ered by the decrypting entity. As already mentioned, this assumption is, however, wrong.
With CBC encryption, the limited error propagation during decryption gives changes in
the ciphertext only a very local influence on the plaintext. The ability of the system to
detect whether the plaintext is still meaningful depends very much on the higher levels
of the system that deal with this data. And some changes can be even fully predictable by
the adversary, e.g. when the initialisation vector is changed. To summarise, the crypto-
graphic layer in the example does not guarantee anything about the authenticity of the
data. Generally, when integrity protection is not explicitly included in an encryption
mode, it is not include(ﬂ. Furthermore, it might be the case that the data does not need
to be kept private, but its authenticity must be protected. Then the system is protecting
the wrong thing, namely the privacy instead of the authenticity of the data.

Making the Security Goals Explicit

Now we get back to the question “Is this system secure?” and to possible implicit addi-
tions of reasonable threats and security goals. The key point we have seen above is that,

! Note that there are modes of operation proposed in the literature that explicitly include in-
tegrity protection, and do so provably under sensible assumptions on the employed block
cipher.

Cryptographic Attack Metrics 135

when they are added implicitly, the security goals are not well-defined. In the example,
is protecting the data authenticity necessary? Or is it even essential? These questions
can only be answered if one knows exactly what kind of data is involved, and how it is
handled by the upper system layers.

As a consequence, the security goals of a system need to be stated before making
design choices for the security layers of a system, i.e. selection of cryptographic algo-
rithms, modes, parameter sizes like key lengths, etc.

This process of selecting and stating security goals of a system is a delicate task. The
discussion above should have made it clear that usually a system is designed to protect
against certain threats, while other threats might not have been addressed.

Indeed, the analysis and selection of threats a system needs to protect against must be
an integral part of the system’s design phaseH. This analysis of threats is called threat
analysis. During the threat analysis the whole system to be designed, especially the
involved entities, the data, and the functionality, is examined to discover the threats that
the system and its components may face.

From Threat Analysis to Cryptography

The discussion above highlights that it is necessary to clearly state the security goals of
a systems before one can evaluate its security. The security goals should be derived from
a threat analysis during the design phase of a system. Indeed, an initial threat analysis
and explicit mentioning of the threats the system shall protect against is a necessity in
order to design secure systems, with possible several iterations through the design and
analysis cycle.

Typical security goals, especially in networked or distributed systems, include goals
like confidentiality and authenticity of transmitted data, or authenticity of involved en-
tities. To reach these and other goals, usually cryptographic methods are employed.

On the one hand, selecting the right general cryptographic method to solve a given
security problem, e.g., message authentication code or digital signature for authenticity
of data, is in many cases rather straight-forward. On the other hand, the selection of
concrete algorithms, mode of operations, and parameters like key sizes can be a very
delicate task. Examples include the mode of operation of a block cipher, along with the
key size, to protect confidentiality of data, selection of a block cipher with key length
and a message authentication code along with a suitable size of the authentication tag
for data authenticity. A further and in practice important example is the selection of an
asymmetric cryptographic algorithm for key transport or digital signatures, along with
a key size, that does not put an unnecessary computational burden on the system, but
keeps the data secure for the required amount of time.

The current chapter aims at providing some general help to this end. However, it
turns out that providing a metric for cryptographic security is not well-defined. Instead,
a metric for cryptographic insecurity, which we call the attack metric, makes sense. The

% However, this process is often neglected in practice, such that people start adding security
functions only after the basic functionality of the system is established. Consequently, this can
place problematic constraints on the security subsystem. These constraints result from prior
design choices, and could have been avoided if the design of the system did include security
functions.

136 7. Benenson, U. Kiihn, and S. Lucks

idea is to measure the effort, such as time or computational expenses, an adversary has
to invest to break a system.

12.3 On Measuring Cryptographic Insecurity

In this section we describe a metric for the efficiency of cryptographic attacks. The
reader might reasonably have expected a metric to measure the security of cryptosys-
tems, rather than some kind of attack metric. However, as we will explain in more detail
below, a cryptographic security metric could yield falsely positive indicators of security
of a system. Consequently, a cryptographic security metric can actually be dangerous.

What Would Be Wrong with a Cryptographic Security Metric?

Ron Rivest] described cryptography as being “about communication in the pres-
ence of adversaries”. Here, the word “communication” is used in a very general sense.
For example, when storing some data to a file, the CPU communicates with the file sys-
tem. If the data in question are confidential, and there is any possibility of an adversary
reading these data, one should encrypt them. Thus, there is an application running in an
adversarial environment, and there are cryptographic algorithms and protocols (in short,
“cryptosystems”) as a defence against adversaries. Any “cryptographic metric” has to
measure attributes of cryptosystems. The most important attribute of a cryptosystem is
its security — how well does the cryptosystem defend against adversarial attacks?

Assume a top-down approach, similarly to the Goal-Question-Metric paradigm, see
Chapter 6. The global goal is a tool for the design and analysis of secure cryptographic
applications. The question thus is, how much security does a given cryptosystem con-
tribute to the security of a given application? Applications usually employ one or more
complex cryptosystems, composed from some simpler cryptosystems, in turn composed
from simpler cryptosystems, etc. ... This top-down approach stops at some crypto-
graphic primitives such as, e.g. block ciphers, which cannot reasonably be decomposed
into lower-level cryptosystems. To measure cryptographic security at the application
level, we thus have to go bottom-up: estimate the security of complex cryptosystems
based on the security of its components. So far, however, this approach does not pro-
vide reasonable results because of the following regrettable fact:

Cryptographic security is not preserved under composition.

For a somewhat surprising example, consider combining a secure encryption (to en-
sure privacy) technique with a secure authentication method (for authenticity, obvi-
ously). It may be counter-intuitive, but in this case, it matters a lot for security whether
(on the originator’s side) the plaintext is first encrypted and then the ciphertext authen-
ticated, or the plaintext is first authenticated, and then encrypted. With the wrong order
the composed scheme may be insecure. The right order, however, ensures both privacy
and authenticity, if the components, i.e. the encryption and the authentication method,
both are secure].

A minor issue for any cryptographic security metric is that estimating the security of
a primitive is mostly educated guesswork. After the publication of a primitive, crypt-
analysts try to find good attacks. Most primitives are broken pretty soon after their

Cryptographic Attack Metrics 137

publication. If, after a decent amount of time, no major attack has been found, and there
seems to be no more progress in finding better attacks against this primitive, the cryp-
tographic community gains confidence in such a primitive, assuming that no significant
improvement over the best attacks against it will be found. This is a reasonable ap-
proach, and in order to do any practical cryptography, one has to accept this as a fact of
life. But in principle a primitive is either known to be insecure, or of unknown security
(and, after years of unsuccessful analysis, assumed to be secure).

As we indicated above, the major problem for any cryptographic security metric is
going bottom-up from the primitives to the complex cryptosystems. One can compose
some cryptosystem from secure components, and even without any flaw in the com-
position itself, the composed cryptosystem turns out to be insecure. Replace a secure
primitive by another one, and the composed cryptosystem turns out to be secure. So far,
no cryptographic security metric can describe the cryptosystems’ attributes sufficiently
well to make secure predictions about the security of their composition.

Paradoxical Security Properties of Complex Cryptosystems

In this section, we will briefly describe some examples of apparently “paradoxical” se-
curity results concerning complex cryptosystems, and how seemingly reasonable
choices cause insecurities. For simplicity, we focus on cryptosystems where we need
one single primitive, namely a block cipher.

An n-bit block cipher with a k-bit key space is a function

E:{0,1}* x {0,1}" — {0,1}",
such that for all K € {0, 1}* the function
Ek(z)=E(K,z):{0,1}" — {0,1}"

permutes over {0, 1}™. Given K, one can efficiently compute both the permutation Ex
and its inverse E'.

As concrete examples for block ciphers, we consider AES (Advanced Encryption
Standard), a 128-bit block cipher, which comes with key sizes of 128, 192, and 256 bits,
and three-key triple-DES (Data Encryption Standard), a 64-bit block cipher with 168-bit
keys.

Considering “m Bits of Security” as a Security Metric. There is a multitude of
different attacks against block ciphers. However, chosen ciphertext attack is considered
as some kind of a “standard” attack a good block cipher should resist.

It is usual to define attacks as some kind of a game between the adversary and a
“challenger”. A chosen ciphertext attack against a block cipher £ works as follows.
The goal of the adversary is to distinguish the block cipher (with some fixed but random
key, unknown to the adversary) from a random permutation.

— First, the challenger devises a permutation 7. To do this, the challenger flips a fair
coin to generate a bit b € {0, 1}.
e If b = 0, the challenger chooses a random permutation 7 over {0, 1}™. This

fixes also its inverse 7.

138 7. Benenson, U. Kiihn, and S. Lucks

e If b = 1, the challenger chooses a random key K € {0, l}k and sets m = Ex
and 7! = Bl
— Further, the challenger gives the adversary oracle access to the permutations 7 and
7%, which works as follows. The adversary is allowed to ask some queries. Each
query is either a chosen plaintext query (choose x € {0,1}" and ask for 7(z)), or
a chosen ciphertext query (choose y € {0, 1}" and ask for 7=1(z)).
— At the end, the adversary has to deduce b.

It is easy to guess b with a probability 1/2. An attack is “good”, if the adversary can
efficiently deduce b with a probability significantly exceeding 1/2.

For AES, there is no better chosen ciphertext attack known than exhaustive key
search over all 2128 to 2256 keys. For three-key triple-DES, there are more advanced
chosen ciphertext attacks known, the best one runs in time equivalent to 2!%% encryp-
tions . In any case, no chosen ciphertext attack against either AES or three-key
triple-DES is known to be even remotely practical, so both block ciphers appear to be
secure.

As some people would put it, AES has 128 bits of security, and three-key triple-DES
has 108 bits of security. The notion of “m bits of security” appears in the literature as
some kind of security metric. If m exceeds, say, 100, this indicates quite a strong cipher.

Now, wouldn’t this “m bits of security” make a good security metric? How does this
metric behave under composition?

For a simple composed cryptosystem, think of an (unkeyed) cryptographic hash
function

H:{0,1}* — {0,1}".

The standard attack — as an exception from the general rule not an interactive game
between adversary and challenger — is a collision attack: The adversary succeeds if it
can find any X # Y with H(X) = H(Y). One could say, this hash function has “m
bits of security”, if the best attack we know of takes m steps of computations.

A classical (and extremely simple) composition technique is to define a hash function
from an n-bit block cipher as follows:

Fix some initial value Hy € {0,1}".

Split the message M € {0,1}* into k-bit blocks A0y, ..., My, € {0,1}*, with
some padding in the last block M, (as the length of M may not necessarily be a
multiple of k).

Iterate H; = E)yy, (Hi—l) ®H;_4.

Output the final result H(M) = Hp,.

Observe that Hy, Hy, ..., Hr, € {0,1}" —so the output size of our hash function is n.

In some idealised formal model for block ciphers, there is a proof that this construc-
tion is approximately as secure (i.e., collision resistant) as any n-bit hash function could
ever be [59]. Thus, if we use AES with 128-bit or even 256-bit keys — does this imply
that our hash function, which we have composed from AES, has “128 bits” or even
“256 bits of security”? Unfortunately, the answer is a definitive no. Our AES-based
hash function is a 128-bit hash function, and against all n-bit hash function one can

3 Note that k is the key size of the block cipher, not its block size.

Cryptographic Attack Metrics 139

mount the so-called “birthday attack” with a workload of 2"/2. With whatever variant
of AES we instantiate this hash construction, we will get (at most) 64 bits of security.

Even worse, if we think of “m bits of security” as a security metric. We may replace
AES by a much weaker cipher, but with a block size n > 128, and improve the secu-
rity of our hash construction! (Beware — there could be other attacks than the birthday
attack!) As an extreme case, set k = 1 and n = 256. A chosen ciphertext attack against
such a block cipher is very efficient, as one can easily search the entire key space with
both of its keys. Nevertheless, such a block cipher might be used in the context of a
hash function as described above, and actually provide “128 bits of security” — in spite
of being extremely weak with one single bit of key space.

Thus, if we used the notion of “m bits of security” as a security metric, the com-
position of cryptosystems would provide very surprising and seemingly paradoxical
results, contradicting the following rule, which can be derived from the properties of a
meaningful metric as introduced in Chapter 2:

A reasonable security metric should behave monotonely: if we replace an in-
secure component by a more secure one, the composition’s security should at
least remain constant, but not decrease.

Choosing Right Primitives for Composed Cryptosystems. There exist quite a num-
ber of further attacks against block ciphers. We will describe just one more, namely
chosen ciphertext related-key attacks. Here the adversary is given access to several per-
mutation oracles which, in the case of being derived from the block cipher, are related.
The adversary’s goal is to distinguish this from the case of an equal number of (unre-
lated) random permutations.

— The challenger flips a fair coin to generate a bitb € {0, 1}.

e If b = 0, the challenger chooses a family of 2* random permutations 75 over
{0,1}"™. We write w5 for the respective inverse permutation.

e If b = 1, the challenger chooses a random key K € {0,1}* and sets 7, =
Exerandr;' = Egl; forall L € {0,1}*

— The adversary is allowed to ask some queries. Each query is either a chosen plain-
text query (choose d € {0,1}*, z € {0,1}" and ask for 74(z)), or a chosen
ciphertext query (choose d € {0, 1}*,y € {0, 1} and ask for 7, *(z)).

— At the end, the adversary has to deduce b.

As before, an attack is “good” if the adversary can efficiently deduce b with a probability
significantly exceeding 1/2.

For AES, the best related-key attack is, again, to exhaustively search through the
entire key space. But this type of attack really distinguishes AES from three-key triple-
DES, which actually is insecure against such attacks 270].

Initially, related-key attacks had mostly been considered a theoretical tool to analyse
the so-called “key schedule” of a block cipher. However, it turned out that some com-
posed cryptosystems actually expose an underlying block cipher to related-key attacks.

* This is the special and quite common case of a related-key attack with @ as its key transfor-
mation. There are more general definitions for related-key attacks in the literature, see Lucks
[@] and references therein.

140 7. Benenson, U. Kiihn, and S. Lucks

Two examples are tweakable block ciphers, see Liskov et al. [@], and the RMAC
message authentication code by Jaulmes et al.]. In general, the designer of a com-
posed cryptosystem should specify which attacks the underlying components actually
are required to resist.

Clearly, if one uses such a composed cryptosystem, one needs to employ an under-
lying primitive (here, a block cipher) which is “secure” against such specific attacks. It
is easy to overlook this. Even though the security proof in Jaulmes et al.] explic-
itly assumed security against related-key attacks, NIST proposed RMAC instantiated
with three-key triple-DES for standardisation 1369]. Fortunately, an attack by Knud-
sen and Kohno [E%] by employing a well-known related-key attack against three-key
triple-DES was published in time before the proposed standard was confirmed.

Composable Cryptography

There exists an important research branch about “provable security” in cryptography,
studying how to securely compose a cryptosystem from abstract components, assum-
ing certain requirements on these components. At first glance, answering the question
“Does the component satisfy these requirements?” would make a reasonable security
metric, allowing its user to deduce the security of composed cryptosystem. However,
in general, these requirements are specific for each composed cryptosystem. So this
approach would give us lots of different metrics, each for one specific purpose.

In the past few years, some theoretical approaches for “composable” cryptography
have been studied, see Canetti [@] and Backes et al. [@] for some of the early papers
on this. Cryptographic components need to satisfy certain conditions to be theoretically
“composable”, i.e. to provably preserve their security under composition. The com-
position itself is not arbitrary, but follows certain rules. This improves the traditional
approach of provable security and may possibly lead to some useful cryptographic se-
curity metric in the future. So far, however, only few components of practical interest
have been found to be “composable”, and some are even known to not be “composable”.

Actually, the goal of the theoreticians dealing with different notions of composabil-
ity is defining something which could be used as a cryptographic metric. Thus, building
an acceptable metric is a research goal far away on the horizon. So far, too few cryp-
tographic schemes fit into any composability notions. For example, these notions are
asymptotic by measuring the attack time as a function of the parameter size. Primitives
with a fixed set of parameters, such as AES or SHA-1, are asymptotically weak, as one
cannot arbitrarily increase their parameters. For these primitives, exhaustive key search,
or collision or preimage search all can be done in constant time.

The Attack Metric under Cryptographic Composition

As we have seen above, when it comes to measuring the security of composed cryp-
tosystems, any cryptographic security metric will frequently result in flawed conclu-
sions. We could claim to provide only a metric for cryptographic primitives and not
to measure the security of composed cryptosystems at all. But such a metric would be
useless, as any “meaningful operation on attributes of a system should have a corre-
sponding operation on the measurements of that attribute”, as required in Chapter 2 of

Cryptographic Attack Metrics 141

this book. Clearly, handling the composition of cryptosystems is meaningful — and even
essential — to measure the security of complex cryptosystems and applications.

Moreover, we anticipate our readers’ temptation to draw conclusions on the security
of composed cryptosystems, nevertheless. Inaccurate measurements are regrettable, but
not every metric needs to be perfect to be useful. So why not accept some flawed mea-
surements as a fact of life and live with them?

The core point is — the error goes to the wrong side! An error would be a false
positive by falsely classifying a composed cryptosystem as “secure”. Such errors are
potentially harmful, which makes such a metric an insecurity tool.

Thus, it is insufficient to choose cryptographic components seemingly secure against
“standard” attacks. Before finally committing to a composed cryptosystem and some
underlying primitives, one must understand precisely what component need to resist to
which types of attack. This task should be left to expert cryptographers. A cryptographic
attack metric can be useful, however, to sort out some apparently “bad” choices in
advance, before asking the expert. This is what we will provide below.

These are the basic rules for using our attack metric:

1. A primitive is either insecure (there is a feasible attack known), or of unknown
security.

2. A freshly published primitive is considered insecure for some time.

3. A composed cryptosystem is insecure if there is an attack against its structure, or if
it is freshly published.

4. A composed cryptosystem is insecure if any of its components is insecure.

5. A composed cryptosystem is of unknown security if neither rule 3 nor rule [ap-
plies.

6. Avoid the use of insecure cryptosystems.

7. Before using a cryptosystem of unknown security, ask an expert.

The above rules assumed a metric with a dichotomic scale: A cryptosystem is either
insecure or of unknown security, i.e. either an attack is feasible or no feasible attack is
known. In practice, this may often be too restrictive. These rules can straightforwardly
be adapted to an ordinal scale by quantifying the workload for the best known attack.
The attack metric of a composition is the minimum workload of all relevant attacks.

Note that, when comparing our attack metric with a security metric, we find that they
both make errors. However, with the attack metric, such an error results in a false neg-
ative. For example, if there is a certain attack against some component, this attack may
or may not be applicable if the component is integrated into a complex cryptosystem.
In fact, composition in the attack metric can only lead to false negatives. Such errors
are, although regrettable, harmless and acceptable for a security tool.

12.4 An Attack Metric Using Key Size

We have seen in the previous section that measuring attack effort yields meaningful
results even under composition. These results indicate the insecurity of a system. In
this section we will apply this approach to the widely used notion of the key size of a
cryptographic primitive, protocol, or system. Indeed, one of the most straight-forward

142 7. Benenson, U. Kiihn, and S. Lucks

and also popular approaches to assess the security of the cryptographic primitives is the
notion of key size.

Most cryptosystems depend on some sort of a secret key. If the key is too short, the
cryptosystem is insecure. In the sequel, we will discuss the question of how to set the
key size threshold. In particular, the goal of the key size metric is to determine which
key sizes are to be considered inadequate to reach a given security goal until some
year y against a given type of adversary. More concretely, this metric helps to answer
questions like:

— Assume that today all key sizes below a certain limit are considered inadequate for
protecting data with respect to confidentiality or integrity. How will the situation be
in a future year y with respect to the same protection?

— Assume that a symmetric cryptographic key size below s bits is considered inse-
cure. Which asymmetric key sizes (e.g. for Diffie-Hellman key exchange to set up
the symmetric keys) must be considered insecure as well?

A direct corollary from the answers to those questions is a limit on a minimal ac-
ceptable key size in a future year y

The first report which systematically considered adequate key lengths for symmetric
cryptosystems is Blaze et al. [@]. The authors estimate, among other things, the effort
needed for the brute-force attack on the 56-bit keys of DES, and conclude that this key
size is not enough for protecting commercial information in the year 1996. They give
recommendation to use at least 90-bit keys if the encrypted information should still be
protected in 20 years time, i.e. until 2016.

The influential paper by Lenstra and Verheul] offers the first systematic analysis
of symmetric as well as asymmetric key sizes. Since then, other researchers and organi-
sations calculated the key size metric using slightly different approaches and arriving at
slightly different results, see Silverman |, the NESSIE report [@], Lenstra 1,
the NIST recommendation [@], and the ECRYPT report]. Nevertheless, in most
cases the results are close enough to each other, such that the key size can be considered
a well established metric with clear methodology.

Note that the approach taken here differs slightly from the obvious statements of the
previous works, although we use their results. Here, we show how to use this approach
as an attack metric. We consider an attack metric that indicates which key lengths are
not appropriate, instead of expressing which key lengths are adequate, as such a metric
is not composable (see Section[IZ.3)).

Key Size and Effective Key Size

It is clear that the actual key size of a cryptographic object, e.g. a block cipher, sets a
lower bound on the key size. Further, by using this as an attack metric, we do not have
to assume anything about the security of the cryptographic object at hand against other

3 We note that usually the key size of a symmetric algorithm is fixed. Thus, there is no possibility
to gradually increase it. However, the approach of this section still yields meaningful results
insofar as it gives a good hint at when a given key size has to be considered inappropriate for
a given security goal.

Cryptographic Attack Metrics 143

possible cryptanalytic attacks beyond the generic attacks that always work. Instead,
this metric will give us a tool to determine when the key size is too short to achieve a
specific security goal. Additionally, from the paradigm of attack metrics we obtain the
same kind of results for more complex cryptographic systems, although with the same
caveats of false negatives.

For example, the generic attack class that is measured with key-size metric for sym-
metric ciphers is brute-force key search. Here the adversary attempts to recover the
key by trying out all possible keys. The resources, e.g. time or storage, required to the
brute-force attack on an n-bit symmetric key yield a bound on the adversary’s ability
to break the primitive. Although the time needed depends on the actual primitive, the
speed differences have been found to be rather insignificant for this kind of resource
estimation.

As another example, asymmetric cryptographic primitives often rely on problems
that are assumed to be hard to solve, such as the integer factorisation or the computation
of discrete logarithms. Here the generic attack on an asymmetric primitive involves
solving the underlying hard problem.

Symmetric and asymmetric algorithms are often used in combination. For example,
symmetric keys can be exchanged or transmitted using an asymmetric algorithm. Thus,
we need to be able to compare the breaking efforts for these algorithm classes. Here we
follow the approach from Lenstra [297] which takes into account the generic attacks, i.e.
brute force for symmetric ciphers, birthday attacks for hash functions, the best generic
mathematical algorithms for integer factorisation etc.

The notion “key size” (or “key length”) refers to the bit-size of security-critical pa-
rameters of cryptographic primitives, which are not necessarily the real keys. Examples
include the size of the output of the hash function, the size of the RSA modulus, and
the sizes of groups and subgroups in systems based on discrete logarithms. In order to
make this comparable and have a clear notion we define the effective key size.

Definition 1 (Effective Key Size). Let A denote a cryptographic algorithm with k-bit
keys with a specific security goal. For a given k, write fa(k) for the expected running
time of the best known attack, i.e. the fastest algorithm to successfully undermine the
security goal. Then s = logy(fa(k)) + 1 is the effective key size of A.

For an ideal block cipher with k-bit keys, the best known attack to undermine the usual
security goals is exhaustive key search, which needs time 2! on average. So in this
case, the nominal key size k and the effective key size s are the same. For AES, no
attack better than exhaustive search is known, so again we have s = k.

But not all symmetric algorithms have s = k, not even all which are used in practice
and considered secure. One famous counterexample is three-key triple-DES, the appli-
cation of three instances of DES in a sequence, using three independent keys. As the key
size of DES is 56 bits (not counting some additional parity bits), the nominal key size

% The ECRYPT report] uses the term “equivalent” instead, and only for asymmetric cryp-
tographic primitives, using the expected strength of symmetric cryptosystems to describe the
security of asymmetric cryptography. Our notion of “effective” key size is similar in spirit,
but applies to symmetric cryptosystems as well. Essentially, we use the strength of an “ideal”
symmetric primitive to measure the security (or insecurity) of both symmetric and asymmetric
cryptosystems.

144 7. Benenson, U. Kiihn, and S. Lucks

of three-key triple-DES is 3 - 56 = 168 bits. It had long been known that the so-called
meet-in-the-middle attack for three-key triple-DES runs in the time equivalent to 212
encryptions, which implies an effective key size of only 113 bits. About ten years ago,
it turned out that one can speed-up this attack to about 2'°% encryptions 1, which
implies an effective key size of only 109 bits[l

As the above example highlights, the effective key size s of a given cryptosystem can
change over time, but it can only shrink, never grow. This is because we may discover
new or improved attacks, but we assume that a good attack, once known, cannot be for-
gotten. As we bound the effective key size to the “best known attack™, it is a quantified
attack metric.

How about asymmetric algorithms and their effective key size? For example, for
RSA the best known algorithm to break the general instance of the underlying number-
theoretic problem is the general Number Field Sieve with an heuristically expected
running time of L(N,1/3,a) = e~(n NV N)*? for a number N of bit-length
k = [logy(NN)]. This expression hides some constants, which are only known approx-
imately. But the experts in the field agree that the effective key size for, say, 1024-bit
RSA (i.e., £ = 1024) is actually between 72 bits and 80 bits, as explained in the next
section.

On a side note, in the case of asymmetric cryptography, the nominal “key size” is not
always a well-defined notion. Even in the case of RSA, one considers the length of the
modulus NV as the determining parameter, but V is only a part of the public key, and the
length of the public and private exponent may also matter for the security. Sometimes,
we just write “parameter choices” for families of asymmetric cryptosystems.

Key Size Threshold as a Function of Adversarial Power

Obviously, some adversaries have more power (money, computational resources) than
others. Accordingly, if your adversary is powerful, the key size threshold for the attack
metric needs to be larger than if you only have to defend against a weak adversary.
For example, defending against attacks from a well-funded government agency is much
more demanding than defending against a casual criminal trying to break the system on
his own. Thus, it makes sense to distinguish several classes of potential adversaries.

However, when designing a system one should not underestimate the abilities of an
adversary, although from an economic point of view, overestimating these abilities may
result in a stronger-than-necessary protection. Nevertheless, this argument is danger-
ous, as what is necessary usually turns out only in hindsight, so it is important to be
conservative here.

Blaze et al. [@] consider adversaries undertaking brute-force attacks on symmetric
keys protecting commercial information. These adversaries are classified by the amount
of resources which they invest into the effort. The unit of measurement used is US-$,
based on the assumption that this money is invested in hardware to facilitate the attack,
see Table[Il It should be noted that these figures are based on the year 1996, and would
need a correction to accommodate advances in computational power since then.

7 We remind the reader that we talk about certain types of attack which are “usual” in the context
of block ciphers. If one allows some more unusual types, such as, e.g. related-key attacks,
three-key triple-DES is quite vulnerable.

Cryptographic Attack Metrics 145

Table 1. Estimates on time and cost of successful attacks on 56-bit keys in 1996 for different
classes of adversaries (from Blaze et al. [@])

Attacker Type Budget Tool Time Amortised Cost

[US-$] per Recovered Key
Hacker tiny PC infeasible
400 FPGA 38 years $5,000
Small Business 10k FPGA 18 months $5,000
Medium 300k FPGA 19 days $5,000
Organisation ASIC 3 hours $38
Big Company 10M FPGA 13 hours $5,000
ASIC 6 minutes $38
Intelligence 300 M ASIC 12 seconds $38

Agency

The slowest and cheapest attacks can be mounted using off-the-shelf commodity
PC-hardware. This approach can be used by virtually anyone, even a single “hacker”.
It should be noted, however, that in recent years serious cryptographic challenges were
solved by exploiting parallelism using a large number of PCs and workstations con-
nected via Internet, see the Distributed Net Project (122)]. This suggests adding a new
class of distributed adversary, as in the ECRYPT report].

More wealthy individuals and small organisations can buy Field Programmable Gate
Array (FPGA) chips which allow much faster attacks. Organisations with large budget
can even afford the development of custom chips, called Application-Specific Integrated
Circuits (ASICs) which are several times faster than FPGAs.

It should be noted that the time-money relation remains roughly constant in Table[Tt
An attack which can be carried out in d days and costs ¢ US-$ can also be carried
out in d/w days at the cost cw US-$. This is due to the high parallelism of the key
search attacks: the key space can be divided into arbitrary small parts (down to the
individual keys) which can be searched independently (not taking into account possible
communication and trustworthiness issues).

Based on the above budget classification, and on a classification of the intended
duration of the cryptographic protection into short-term, middle-term and long-term
protection, the ECRYPT report (149 suggests 8 security levels (including one legacy
level) for parameter sizes of cryptographic primitives (Table[2)).

For our attack metric these security levels and their respective “bits of security”
should be considered as a kind of lower bound below which a system or component
becomes increasingly insecure against the indicated type of adversary.

Key Size Metric as a Function of Time

It is a well-known fact that computers get more powerful over time. Thus, a key which
was sufficient to defend against a certain class of adversaries ten years ago may be
insufficient today, and a key size or parameter choice which is acceptable today can
be too small in ten years. An influential work on determining adequate key sizes was
done by Lenstra and Verheul [298]. In brief, and using our definition of the “effective

146 7. Benenson, U. Kiihn, and S. Lucks

Table 2. Security levels from the ECRYPT report [[149, Table 7.4]

Security Bits of Protection Type
Level Security

1. 32 Attacks in real-time by individuals

2. 64 Very short-term protection against small organisations

3. 72 Short-term protection against medium organisations,
Medium-term protection against small organisations

4. 80 Very short-term protection against intelligence agencies,

Long-term protection against small organisations
96 Legacy standard level
112 Medium-term protection
128 Long-term protection
256 “Foreseeable future",
Good protection against quantum computers

®© N oW

key size”, it is based on choosing an effective key size s’ which is considered to give
“adequate protection” in some year 3’. This is followed by an estimation (based on
Moore’s law, see below) of the effective key size s needed in the target year y for
adequate protection. Finally, one estimates the parameter choices for the target family
of cryptosystems such that its effective key size is at least sB

Inspired by Lenstra and Verheul (298], there where a number of similar approaches
to measure the effective key sizes, see the ECRYPT report] for a comparison.
Further, a popular website keylength.com 1184] allows to directly view and compare
the results from different measurement methods. Below we will recollect the approach
and measurement method suggested in Lenstra 2971 (which refines on Lenstra and
Verheul [@]) using the examples of symmetric and asymmetric algorithms as well as
hash functions. As already mentioned above, if some attack can be carried out in d days
at cost ¢, then this attack can also be carried out in d/w days at cost cw. Therefore, the
attacker’s effort is measured in dollardays.

Adequate Protection. As an example, Lenstra] defines the notion of “adequate
protection” as the security offered by DES in the year 1982. This security level is 56 bits,
the effective size of DES keys. Calling this “adequate” was a very deliberate choice, a
given system may need a higher level of security, for another system a lower level may
be sufficient. As we will elaborate below, 56 bits in 1982 is equivalent to 72 bits in
2006, which implies the security level 3 in Table 2l

To follow this approach, one needs to determine the amount of dollardays which was
needed to break DES in year 1982. The rationale behind this definition is that DES was
published in the year 1977 [368], and was brought up for reaffirmation once every 5
years thereafter. DES was widely adopted, and in the year 1982, at the time of the first
reaffirmation, was considered to offer adequate protection for commercial applications.

8 The name “adequate protection” is, perhaps, slightly misleading. In the spirit of our attack
metric, we consider any key length or parameter choice below the level required for “adequate
protection” as inadequate.

Cryptographic Attack Metrics 147

We stress that it is perfectly possible to measure the attacker’s effort in some other
way, to define adequate protection differently, or to use another starting point than the
one used by Lenstra 1.

The Cost of Breaking Adequate Protection. The cost of attacking a system provid-
ing adequate protection, i.e. the dollardays needed in 1982 to break DES, needs to be
estimated or determined next. Lenstra] reports that in 1980 the cost of breaking
DES was estimated as 100 M dollardays. In 1993, the design of a DES-cracking device
for about 150 k dollardays was proposed by Wiener], and, finally, in 1998 a DES-
cracking machine able to recover a DES-key in several days was built at hardware costs
of about 130k US-$ [[140]. Note that the latter value was found in practice by actually
running the brute-force search.

This progress was made possible by advances in technology which can be described
by Moore’s law, an empirical rule stating that the computing power per area available on
a chip doubles roughly every 18 months. In the context of attacking the cryptographic
primitives, this rule can be reformulated as follows:

Moore’s law. The cost of every fixed attack effort drops by a factor 2 every 18 months.

Now, to find the estimated costs of breaking DES in 1982, this rule is applied to the
estimated cost of 100 M dollardays in 1980, resulting in 2~2%/1® times the initial value,
i.e. about 40 M dollardaysﬁ We say that the cryptosystem offers adequate protection
until year y if the cost of the successful attack on this cryptosystem in this year can be
expected to be approximately 40M dollardays

Symmetric Key Sizes. Above we have outlined how to determine the cost in year y
to break a cryptographic primitive offering adequate protection. The effort of a generic
attack on a symmetric primitive with an n-bit key is about 2" cipher operations, i.e. the
cost of brute-force key search.

Leaving other cryptanalytic progress asideEl, there are twofold influences on the
symmetric key size for providing adequate protection. One is that the required effort
of brute-force key-search doubles with every additional bit in the key, the other is the
above-mentioned technological progress described by Moore’s law.

According to the latter, the adversary’s resources double every 18 months, and there-
fore, in the year y the adversary can be assumed to have 2(v—1982)/1-5 times more re-
sources for the same cost as in 1982. Therefore, in the year y, the cost of breaking an
n-bit key would be 2(¥=1982)/15 times less than in 1982. In order not to be considered
insecure, it should still be more than 40 M dollardays:

2n 1

40

536 407 S rosays = 40 = n =56 > (y — 1982)/1.5 (1)

% We note that this estimate does deviate from the practical data point in 1998]. By this
time, the initial 100 M dollardays in 1980 would have dropped to 24 k dollardays, a factor of
about 15 below the real data of 130 k US-$ and and average search time of about 3.5 days.
However, the error made is to underestimate the real costs and overestimate the adversary.
Thus, the estimation errs on the conservative side.

10 The effect of inflation could be taken into account, but we do not consider it here, as it is quite
small compared to the technological progress (about a factor of 2 every 10 to 25 years).

"'We may do so as we are later using these results in an attack metric.

148 7. Benenson, U. Kiihn, and S. Lucks

From this we can compute the minimal necessary key length for providing adequate
protection in the year y:

2(y — 1982
n =56+ 2 ;), 2)
as well as the year from which on an n-bit key fails to offer adequate protection:
3(n — 56
y = 1982 + ("2). 3)

Examples

— The key size of 72 bits did offer “adequate protection” until the year y = 1982 +
3(72 — 56)/2 = 2006. Thus, “adequate protection” implies a security level 3 as
defined in Table 2l i.e. “short-term protection against medium organisations and
medium-term protection against small organisations”.

— Similarly, Table @] defines “medium-term protection” (security level 6) as 112 bits
in the year 2006. Thus, if we increase the key size to 124 bits, we get medium-term
protection until the year 2024 = 2006 + 3(124 — 112)/2.

— If we stick at security level 3 (“‘adequate protection” as above), then 80-bit keys
offer this level of security at most until the year y = 1982 + 3(80 — 56) /2 = 2018.

Hash Functions. The generic collision attack, which applies to any hash function with
H-bit output, uses the birthday paradox and has the cost proportional to 27/2. There-
fore, if the effective key size we need is s, any hash function with less then 2s output
bits is insecure.

Parameter Sizes for Asymmetric Cryptosystems. Most estimates of the appropriate
key sizes consider schemes based on the difficulty of integer factoring (such as RSA),
the systems based on the difficulty of computing discrete logarithms in finite groups
(such as Diffie-Hellman, ElGamal, elliptic curves), and those based on the subgroup
discrete logarithm systems (such as Schnorr’s signature scheme or DSA). For the sake
of brevity, only the factoring based systems are considered here, as the aim of this
section is to provide examples of the key size calculation.

The generic attack on RSA is the factoring of its modulus. The fastest publicly known
factoring algorithm is the general Number Field Sieve algorithm which can factor a
number N at costs of approximately

L(N, 1/3701) — ea(lnN)l/3(lnlnN)2/3 4)

where @ = 1.976 + o(1). According to Lenstra], the cost of factoring a 1024-
bit RSA modulus in 2004 can be estimated as 400 M dollardays. Analogous to the
symmetric key case, the cost of the factoring of an b-bit RSA modulus in 2004 can be
estimated as
L(2°,1/3,a)
L(210241/3,)

When b is reasonably close to 1024, one can assume that the factors o(1) cancel out,
making this an acceptable approximation.

-400 M dollardays. 5)

Cryptographic Attack Metrics 149

As in the symmetric case, the resources of the adversary satisfy Moore’s law, and
therefore, in the year y, are 2(¥=2909/15 times higher for the same cost as in 2004.

In contrast to the symmetric key case, the cryptanalytic progress in the factoring
algorithms developed continually over the years and decades, and therefore, can also be
estimated with Moore’s law. This leads to the estimation that in the year y, an adversary
could factor 2(¥=2009)/1.5 times faster than in 2004, and therefore, the cost of factoring
in the year y can be estimated to be a fraction of 2~4(¥=2004)/3 of the costs in 2004.

Based on these estimates it is now possible to find the length b of an RSA modulus
such that it should at least not have to be considered insecure by the year y:

L(2°,1/3,1.976)

400 > 40 . 24(y—2004)/3 6
L(21024 173, 1.976) 00 =40 ©)

For example, a 1024-bit modulus would have to be considered insecure after 2006,
which corresponds to the symmetric key size of 72 bits, see Formula). This is in
contrast, e.g., to the NIST recommendation [@] to use 1024-bit moduli in conjunction
with the 80-bit symmetric keys until 2010. Nevertheless, these two estimations are close
enough to each other.

Summary: Using the Key-Size Metric as an Attack Metric

So far, the description of the key-size metric focused on cryptographic primitives. In
Section [[2.3 we have seen that a metric measuring the security of a system composed
of such primitives is rather dangerous. Instead, applying the key-size metric in our
paradigm of an attack metric for composed systems yields meaningful results, such that
errors are false-negatives. That is, for composed systems the resulting key-size based
attack metric yields recommendations for key sizes of the components that do not make
the complete system insecure.

12.5 (In)Security Metrics from Provable Security Results?

In recent years, there is a clear trend towards having security theoremd'3 for crypto-
graphic primitives, constructions, or protocols. In this section we aim at explaining the
implications of such theorems, raise attention regarding possible pitfalls, and argue that,
while such results could ultimately be used for a metric, it is actually still too early to
do so.

Provable Security

In modern cryptography, constructions like modes of operation for block ciphers or
padding schemes for RSA encryption / signatures used to be designed and analysed in a
rather ad-hoc manner, i.e. without a formal framework or proofs that these constructions

12 Usually one speaks about proofs of security. Here however, we focus not on the existence of
such a proof, beyond establishing a theorem, but on the theorems themselves, which gain only
the status of theorems by having a valid proof. Therefore, we adopt the language of speaking
about security theorems.

150 7. Benenson, U. Kiihn, and S. Lucks

were sound. This changed in recent years as more and more constructions underwent
a rigorous formal analysis yielding proofs of security. Further, new constructions are
usually designed with provable security results in mind and are proposed in conjunction
with such results.

While a security theorem for a cryptographic primitive, construction, or protocol is
certainly desirable, the evaluation of the implications of the resulting security theorem
must be done with great care. One danger here is to treat the existence of a theorem in
a black-or-white manner, like a box on a check-list that is to be ticked.

In fact, when evaluating the theorems, one needs to pay attention to three issues: (1)
the model or set of axioms, (2) the assumptions as a prerequisite of the theorem, and (3)
the conclusions. In the following, we will speak of security theorems as mathematical
objects, consisting of axioms, assumptions, conclusions, and a proof. We will assume
here that the proof is correct, so that we really can speak about a theorem.

Axioms and Assumptions. The security theorems come with a number of assump-
tions. Like any mathematical statement, the theorem holds only if the assumptions are
met. Otherwise the theorem with its proof does not apply, and therefore does not say
anything about the security of the cryptographic object at hand.

Furthermore, security theorems are usually constructed in a certain security model.
Such a model formalises a further number of axioms on some building blocks of the
cryptographic object at hand. Typical models and their axioms are listed below.

Standard Model: This model uses the standard axioms of theoretical computer science
as they are used for analysis of the efficiency of algorithms.

Random Oracle Model: This model uses the axioms of the standard model, and ad-
ditionally that certain functions can be modelled as a random oracle, i.e. they return
upon input of a new value a new random value. Each output value can be modelled as a
uniformly distributed random variable that is independent of the other result values.

This abstraction tries to model the use of cryptographic hash functions, which are
unkeyed functions. While this model gives some idea about the security about cryp-
tographic constructions, it is a bit controversial, as the available and commonly em-
ployed cryptographic hash functions are far from being random oracles. Further, there
are schemes that are secure in this model, but cannot be instantiated such that they
remain secure, see Canetti et al. [@].

Ideal Cipher Model: This model (sometimes referred to as the “Shannon Model”) uses
the axioms of the standard model, plus the axiom that block ciphers behave like a family
of random permutation where a member of the family is selected by the key. One can
think of this as selecting (without repetition) at random a permutation from the family
of all permutations of the input values.

This abstracts from all properties of real block ciphers (usually consisting of data
randomisation part, the round functions, and key scheduling), so this model essentially
presupposes that the block cipher is secure in any way that one might reasonably expect.

Generic Group Model: Many asymmetric cryptosystems employ a group in which the
discrete logarithm is assumed to be infeasible. On the other hand, the group operation
needs to be performed efficiently on a computer. The computer-based implementation

Cryptographic Attack Metrics 151

thus needs to represent group elements somehow — and the adversary might take ad-
vantage of such a representation. As a trivial example, consider the set of integers in
{0,...,n — 1}, with addition modulo n as the group operation. A natural (and even
canonical) way to represent these numbers would be as [log, (n)]-bit binary numbers,
representing zero as 0. ..0000, one as 0...0001, etc. But in this case, computing the
discrete logarithm is tantamount to division — and thus feasible.

The generic group model treats groups as cryptographically ideal, using the standard
axioms and an additional one, which allows the adversary to apply the group opera-
tion and to compare group elements for equality, preventing all other ways to derive
any information from the representation of group elements. This axiom excludes large
classes of potential attacks, such as using the division in the trivial example above, or
the index calculus technique to compute the discrete logarithm in certain groups. In
fact, the most efficient way to compute the discrete logarithm in a generic group with
n elements takes approximately y/n group operations, if n is prime. For certain groups,
e.g. a carefully chosen subgroup of the point group of a carefully chosen elliptic curve,
the index calculus attacks do not work, and the best attacks known so far actually are
the generic attacks — and thus need the time of roughly y/n group operations, where the
prime 7 is the number of points on the subgroup.

To summarise, the prerequisites of security statements can be classified into two
types of preconditions:

— One type is the model involved, which actually bundles a set of axioms. As they are
mathematical axioms, they are true by definition. Security results in the standard
model are more meaningful than security results in more “demanding” models,
such as the random oracle model, the ideal cipher model, or the generic group
model, because the additional axioms abstract away certain real-world properties.

— The other type describes the assumptions actually made and stated explicitly in the
security theorem. These can be true, or false. If an assumption is false, the theorem
is logically correct but meaningless.

Evaluating the Conclusions. Typical security statements use reductions in their
proofs. That is, they relate the security properties of the cryptographic object at hand to
some security properties of their building blocks or underlying mathematical problems.
These reductions can be stated in an asymptotic (depending on some freely scalable se-
curity parameter) or a concrete manner where security parameters such as block length
of block ciphers are treated as fixed. An example for the latter is the security theo-
rem of the CBC-MAC message authentication code by Bellare et al. [@], and a recent
advancement by Bellare et al.].

Typically, security theorems contain statements about the advantage that any adver-
sary can have in breaking the cryptographic object at hand, including parameters and
the advantage of any adversary against the underlying building blocks. To use such a
result in a meaningful way, it is important to come up with a reasonable setting for the
parameters, and to check that the theorem bounds the advantage of an adversary to a
probability of breaking the system that is acceptable for the application at hand.

152 7. Benenson, U. Kiihn, and S. Lucks

We elaborate the above with an example. We employ the theorem on CBC-MAC for
equal-sized messages from Bellare et al.]:

Theorem 1 ([48], Theorem 3). Let 7 : {0,1}" — {0,1}" be a random permutation.
Let q be the number of queries an adversary can make to a MAC-oracle using CBC|r],
each query with exactly | blocks. Then

lg? 6413
AdeBC[‘n’](QanJ) < qn : <l2+ on > ' (7)

Note that the advantage of an adversary to break 7 is not included here, so it is implicitly
assumed that 7 is instantiated with a secure block cipher. Further, the theorem holds
only for equal-length messages, regardless of what the length [is.

Let us now instantiate the scheme and check what security bounds we get from the
theorem. Assume that we use AES with a random 128-bit key K for 7 (assuming this
meets the requirements), and try to compute message authentication codes for each
block of 512 bytes of a hard disk of about 60 GB. Thenn = 128,1 = 32, ¢ = 60-23° ~
236 Then Theorem[7]tells us that

5072 6915 77
Advepeaps) (2°°,128,32) < 221228 - (12 + 221228 > ~ 22128 Lot = 94T,
This bound is certainly acceptable, as it is an upper bound for the probability that any
adversary can break the integrity protection, provided AES under key K behaves like a
random permutation.

If instead we instantiate 7 with three-key triple-DES, i.e. n = 64,1 = 64, ¢ =
60 - 230 ~ 236 we obtain

16 25272 26918 277 4 -
AdVCBC[3DES](2 ,64764) < 964 . <12—|— 964) ~ 964 225 =2 y
which is completely meaningless as a bound on a probability. In fact, triple-DES with
its rather short block size is not suitable to protect this amount of data under a single
(triple-length) key. Thus, this second instantiation has to be considered insecure, even
though we have a security theorem.
The big advantage of having security theorems is not that things are necessarily
secure, but that we can do the math and get bounds on the security or insecurity of
instantiations!

Proofs. The proof is the basis for a security theorem. Without the proof no such the-
orem is valid. Common proof methods make use of simulation-based arguments or of
so-called hybrid arguments, now usually known as the game-based approach. In the
latter proof technique the security properties are modelled as games which the adver-
sary can win if it can break the cryptographic construction at hand, see Bellare and
Rogaway], Shoup [@] The original game is then transformed step by step into a
similar game where the adversary deals only with random data, so that its advantage in
reaching a winning condition can be bounded.

However, the transformation has to be done in a way that the adversary can distin-
guish the transformation only with a negligible probability.

Cryptographic Attack Metrics 153

A proof of security in the right model for the problem at hand rules out the exis-
tence of all possible attacks breaking the cryptographic construction or protocol with
an advantage better than stated in the theorem. However, there are further pitfalls. When
ultimately implementing cryptography, a proof of security of a certain construction or
protocol does not guarantee that the implementation is correct and secure.

An example for such a problem is given by an attack on PKCS#1 v1.5 and subse-
quently on PKCS#1 v2.0, more specifically on Optimal Asymmetric Encryption
Padding (OAEP). In 1998 Bleichenbacher [[62] presented an attack on PKCS#1 v1.5
encryption padding that could exploit certain reactions of the decrypting party, if the
decryption was implemented incorrectly. In order to protect against this problem, the
PKCS#1 standard was augmented by the OAEP method [45] . This padding method
comes with a proof of security@. However, later Manger] showed that an attack
similar to the one of Bleichenbacher can be mounted against some implementations of
the newly standardised method. It turned out that this new attack was even much more
efficient. In fact, Manger did not attack what was proven secure, but routed around the
proven properties of the cryptographic scheme. The bottom line here is that provable
security results do give assurance about security properties and that these results guar-
antee only what is covered by the security theorem. This last point is important, as there
are potentially many other things that can go wrong when employing a cryptographic
construction or protocol in practice.

Using Provable Security Results to Construct a Metric

Here we take a closer look at the status of the area of provable security in general with
regard to defining an attack metric from these results.

Concrete Security: the Quantitative Approach. The area of provable security is split
up into two different approaches:

— The qualitative approach essentially distinguishes “efficient” from “inefficient” al-
gorithms, where “efficient” often means that the amount of resources is “bounded
by a polynomial” (in the security parameters), while “inefficient” means “‘super-
polynomially”. This approach is useful for simple theorems and proofs, and as a
first step towards understanding security properties, but not quite useful for our
purposes.

The good news is that the proofs in the area of provable security are typically
so-called algorithmic “reductions”. These can often be turned into proofs for quan-
titative statements. The typical costs are a lot of tedious work done by the proof
author, and a much longer proof at the end.

— The quantitative approach, also denoted as concrete security, actually quantifies
the resources needed for an attack, just as we showed above for the CBC-MAC.

13 We presupposed above that the proof of a security statement is correct. However, for OAEP it
turned out that the proof provided in Bellare and Rogaway [IE] had a gap that went unnoticed
for some years until it was exposed in Shoup . While Shoup could show that the gap
cannot be closed under general security assumptions, OAEP could be proven secure when
used in combination with RSA, see Fujisaki et al. [@].

154 7. Benenson, U. Kiihn, and S. Lucks

Typically, concrete security theorems bound an adversary’s advantage and resources
when attacking a compound system based on the advantage and resources for breaking
the components. In order to give an example we need a semi-formal definition:

Definition 2. Let A be an adversary trying to break a cryptographic component C. The
attack consists of making queries of certain types to the components of C and compu-
tations based on the results. Assume that the adversary A makes up to q1 queries of a
first type, up to qo queries of a second type, ..., and up to q, queries of an n-th type.
Further assume that the running time of A, including the time for reading the code of
A, is bounded by t units of time. Then we say that A (t,q1, . . ., qn)-breaks C.

Considering any possible adversary that (t,q1,...,q,)-breaks C we say that C is
(t,q1,- - -, qn, €)-secure with

e =sup {Pr[A (t,q1,...,qn)-breaks C|} .
A

Now an example structure of a concrete security theorem can be described as follows.

Let component 1 be (t1,¢1,€1)-secure, let component 2 be (2, g2, g3, €2)-
secure. Then a certain compound cryptosystem built from these components
is (T, Q, €)-secure, where

T=t —|—t20(...),
Q = q1q2 + g3, and
€=€1 + q1€2.

where ¢;, T bound the respective adversary’s running times, ¢;, () the number
of certain oracle queries, and ¢;, € bound the respective adversary’s advantage
in breaking the components resp. the compound system.

Note that such results usually hold in general, i.e. not only against certain attacks, but
show that the given security property is kept up against any possible adversary trying to
break the system.

The Dolev-Yao Model. There are a few other approaches to formalise and prove cryp-
tographic security. A rather influential one is based on the Dolev-Yao model for cryp-
tographic protocols (133].

This model considers entities which communicate over an insecure network. The
Dolev-Yao adversary has full control over the network which connects the entities.
Thus, the adversary can read all messages, but also decide what to do with these mes-
sages (send them to the intended receiver, send them to the wrong receiver, manipulate
them, suppress them, invent fake messages, . ..). Informally, one could describe the ad-
versary as an untrustworthy Internet service provider. Specifically, the adversary can
always mount a denial-of-service attack against the communicating entities by simply
suppressing all messages they send. The adversary’s goal, however, is more advanced
than just denial-of-service, such as learning the content of some encrypted message, or
making entity A believe that a certain message has been sent by B, while it actually
has been faked or modified by the adversary, or sent by C. The adversarial goals are

Cryptographic Attack Metrics 155

always to break the security properties which to preserve the protocol in question has
been designed to address.

Assuming idealised cryptographic operations (such as symmetric or asymmetric en-
cryption, authentication or digital signatures), one can analyse a given protocol and
hopefully derive a formal logical proof that the protocol serves its claimed purpose. In
contrast to other areas of cryptography, these proofs are often generated automatically,
by appropriate analysis tools. The ability to automatically generate such proofs is a
major benefit of the Dolev-Yao model.

From the point of view of an attack metric, there are two serious drawbacks of the
Dolev-Yao approach. One is that the theorems in the Dolev-Yao model are qualitative,
while we would like to have quantitative statements. The second one is that the proofs
are not algorithmic reductions, but are of a logical nature. This seems to defend against
deriving quantitative statements from the proofs, instead of just qualitative ones.

The Dolev-Yao model has been a landmark in theoretical cryptography. Further, it
was an important step towards automatically analysing cryptographic protocols. But for
the purpose of our metric, it seems not to be useful.

Composability or Simulatability as a Security Metric. As we have seen, crypto-
graphic security is not preserved under composition. One way to resolve this may be to
impose some restrictions on the cryptosystems in question. One may require the under-
lying cryptosystems to have some “extra” features, in addition to their native security
features, one may restrict the composed cryptosystem to follow certain composition
rules. If all these constraints are maintained, then security actually (and provably) is
preserved under composition. Since about the year 2000, this idea has been studied
intensively in theoretical cryptography, initiated by Canetti [@] and Pfitzmann et al.
[@], developing frameworks for “composability” and “simulatability”.

As security properties are preserved under composition, this approach actually al-
lows to define a reasonable cryptographic security metric. The disadvantage is that any
such metric is always only applicable to a very limited number of cryptosystems. The
constraints imposed by the frameworks are severe, most underlying cryptosystems one
would like to use in practice just do not provide the “extra” features required by the
frameworks.

Outlook on Provable Security. In the area of provable security, the hope is that one can
build up in a bottom-up manner concrete (i.e., quantitative) security theorems for ever
more complex systems. In this case the theorems would allow to assess the security of
a very complex security system based on known or assumed simple security properties
of its components. This would indeed be a very comfortable metric.

However, while in a certain sense such security results yield a metric that could be
evaluated by non-experts (although very carefully), it turns out that things are actually
much more complicated and less beautiful.

Usually, there are many different assumptions on the components of compound sys-
tems, not only a single one for each component. Thus, there are many bottom-up hier-
archies growing at the same time, which makes combining them at higher levels rather
difficult. However, we need precisely this in order to achieve the goal of a single met-
ric that can be used by non-experts. Up to now, the assumptions made and the results

156 7. Benenson, U. Kiihn, and S. Lucks

achieved provide a rather complex set of rules that needs a lot of experience to be judged
correctly.

In fact, provable security is a very active research area which ultimately aims at build-
ing up complex security systems from simpler components and bounding the advantage
any adversary can possibly have in breaking the systems. For the present, however, the
research results here mark only a very promising beginning.

12.6 Summary

In this chapter we examined metrics related to cryptographic security. Starting from
considerations about security metrics, two issues turned out to be important: first, one
has to be very careful to specify against which attacks security is sought, and second,
cryptographic security is not preserved under composition. A severe consequence of
the latter finding is that the security of complex systems cannot be established from
the security results on the components the system consists of. In fact, errors in the
measurement add up in such a way that the combined error goes to the wrong side, i.e.
suggesting that a combined system is more secure than it actually is.

Taking on the opposite point of view, namely, measuring cryptographic insecurity
using attack metrics, turns out to be fruitful. With this approach, any possible mea-
surement errors add up in a conservative way, therefore underestimating the security
of a composed system. One example of such an attack metric is a metric based on the
cryptographic key size.

Finally, we investigated whether results on provable security can be used as some
kind of security or attack metric. Researchers in the field clearly follow an approach
well in line with establishing some security metric. Some of the results could indeed
serve as the foundation for building up a security metric. However, the current state
of the art in provable security makes the application of its results to actually measure
the security of complex cryptosystems difficult and error-prone. Currently, we believe
that provable security cannot be used to establish a useful metric. On the other hand,
provable security is a very active research area. We hope that future results in this area
will allow people to build up security metrics.

13 Security Measurements and Metrics for Networks

Thorsten Holz

University of Mannheim, Germany

This chapter surveys research in two areas of security metrics: The first area is the
field of malicious network traffic. The measurements made there are used to estimate
the “health” of a network. The second area is the field of intrusion detection systems.
These measurements can be taken as indicators on the quality of the system, i.e., its
assurance to reliably detect intrusions.

13.1 Measuring Malicious Network Traffic

In today’s Internet, we observe more and more security threats. Examples of these ma-
licious attacks include network attacks against vulnerable services, host based attacks
such as privilege escalation, unauthorised logins and access to sensitive files, data driven
attacks on applications, or many other attack vectors. Up to now, there is no real metric
to classify this malicious network traffic. In this section, we try to come up with at least
some possibilities to measure malicious traffic. This data can then hopefully be used in
the future to establish metrics for this area.

Currently, there are several different attempts to measure security-related network
activity. Measurement is the first step towards a real metric, so we present in this section
the basics. On the one hand, there are tools to measure actual malicious network traffic.
These tools include amongst others honeypots, network telescopes | Internet Motion
Sensor, and flow-based techniques. On the other hand, there are several attributes that
help us to describe malicious network traffic, e.g., backscatter. In the following, we will
describe each of these tools and attributes in detail and elaborate how the results can be
used as a metric. We start with honeypots and honeynets.

Honeypots and Honeynets

A honeypot can be defined as an information system resource whose value lies in unau-
thorised or illicit use of that resource. Honeypots are used to learn more about attack
patterns and attacker behaviour in general. The concept is rather simple: electronic de-
coys, i.e., network resources deployed to be probed, attacked, and compromised, are
used to lure in attackers. A honeypot is usually a computer system with no conventional
task in the network. This assumption aids in attack detection: every interaction with the
system is suspicious and could point to a possibly malicious action.

In honeypot-based research, there is a distinction between two fundamental method-
ologies: high-interaction and low-interaction honeypots. A high-interaction honeypot
is a conventional computer system, e.g., a commercial off-the-shelf (COTS) computer,
a router, or a switch. This system does not offer any production-related services in the
network and no regularly active users access it. Thus it should neither have any unusual

I. Eusgeld, F.C. Freiling, and R. Reussner (Eds.): Dependability Metrics, LNCS 4909, pp. 157 2008.
(© Springer-Verlag Berlin Heidelberg 2008

158 T. Holz

processes nor generate any network traffic, besides regular daemons or services run-
ning on the system. These assumptions aid in attack detection: every interaction with
the high-interaction honeypot is suspicious and could point to a possibly malicious ac-
tion. Hence, all network traffic to and from the honeypot is logged. In addition, system
activity is recorded for later analysis. Several honeypots can also be combined to a
network of honepots, a honeynet. Usually, a honeynet consists of several honeypots of
different type (different platforms and/or operating systems). This allows the operator
to simultaneously collect data about different types of attacks. Usually high-interaction
honeypots help to learn in-depth information about attacks and therefore qualitative
results of attacker behaviour [@, 494]. An example of this type of honeypot is the
so-called GenllII honeynet [@].

A honeynet creates a fishbowl environment that allows attackers to come, while giv-
ing the operator the ability to capture all of their activity. This fishbowl also controls the
attacker’s actions, mitigating the risk of them doing harm to any non-honeynet systems.
It is within this fishbowl environment that the operators place any honeypots they want,
real systems with real services. The key element to a honeynet deployment is called
the Honeywall, a layer-two bridging device that separates the honeynet from the rest of
the network. This device mitigates risk through data control and captures data for anal-
ysis, known as data capture. Tools on the Honeywall allow for analysis of attacker’s
activities. Any inbound or outbound traffic to the honeypots must pass the Honeywall.
Information is captured using a variety of methods, including passive network sniffers,
Intrusion Detection System alerts, firewall logs, and the kernel module known as “Se-
bek”. The attacker’s activities are controlled at the network level, with all outbound
connections filtered through both an Intrusion Prevention System and connection lim-
iter, to mitigate outgoing attacks.

A similar approach in the area of high-interaction honeypots is more lightweight:
instead of deploying a physical computer system which acts as a honeypot, it is also
possible to deploy one physical computer which hosts several virtual machines which
act as honeypots. This leads to easier maintenance and lower physical requirements.
Usually VMware] or User-mode Linux (UML)] are used in order to set up
such virtual honeypots [403]. These tools allow the operator to run multiple operating
systems and their applications concurrently on a single physical machine, thus enabling
an easy way of data collection which can eventually be used as a basis for a metric.

If the operator of a honeynet is primarily interested in quantitative results, it is possi-
ble to even go one step further and pursue the deployment of a whole computer system.
This approach is called low-interaction honeypot in contrast to the high-interaction hon-
eypots described above. This type of honeypot does not simulate all aspects of a system,
but only simulates specific services or some parts of an operating system, e.g., the net-
work stack. Low-interaction honeypots can primarily be used to gather statistical data
about attacks and to collect high-level information about attack patterns. Furthermore,
they can be used as a kind of intrusion detection system where they provide an early
warning, i.e., a kind of burglar alarm, about new attacks (see Sect.[I3.2 for more infor-
mation about intrusion detection systems). Moreover, low-interaction honeypots can be
deployed to lure attackers away from production machines, to detect and disable worms,

Security Measurements and Metrics for Networks 159

distract adversaries, or prevent the spread of spam e-mail [@,]. Low-interaction
honeypots can also be combined into a network, forming a low-interaction honeynet.

In the context of the project eCSIRT net, several European Computer Security In-
cident Response Teams (CSIRTSs) set up a network of network sensors across Europe

]. This network collected data about attacks in a central database for further anal-
ysis and helped in vulnerability assessment. After the project ended, some teams de-
cided to continue the then established sensor network across Europe, which has been
providing information about network attacks since September 2003. A similar project is
leurre.com [401)]. Several low-interaction honeypots are deployed on different networks
and collect data about malicious network traffic in a central database. The collected in-
formation can be analysed and enables a comparison between several different parts of
the Internet in terms of malicious network traffic.

High- and low-interaction honeypots enable a way to measure malicious network
traffic. With low-interaction honeypots, the measurements are rather quantitative since
the resulting data sets are typically statistics about the type of traffic, e.g., how much
traffic has been observed at a particular port during a specified time frame. In contrast to
that, high-interaction honeypots lead to qualitative measurements of malicious network
traffic. The operator can learn about particular types of attacks or new attacking tech-
niques. The collected data could be used to form a metric to classify traffic according
to certain patterns. However, up to now there is no such metric, the research in this area
concentrates currently on data collection. The following quantitative statistics could for
example help to form metrics for this area of research:

Most attacked network ports.

Number of observed, unique IP addresses.
Sequences of attacked ports.

“Mean time between attacks”.

Large-Scale Monitoring of Networks

Today, many solutions exist to observe malicious traffic on a large-scale base, e.g.,
on large parts of the Internet. These solutions often consist of monitoring a very large
number of unused IP address spaces to monitor malicious activities. Several names have
been used to describe this technique, such as network telescopes [@, @], blackholes
m, @], darknets [M], or Internet Motion Sensor (IMS) [@]. All of these projects
follow the same approach: they use a large piece of globally announced IPv4 address
space and passively monitor all incoming traffic or — to a very limited extend — also
respond to incoming packets. For example, the network telescope run by the University
of California, San Diego, uses 224 TP addresses. This is 1/256-th of all IPv4 addresses.
The telescope contains almost no legitimate hosts, so inbound traffic to nonexistent
machines is always anomalous in some way, i.e., the principle of honeynets is also
used in this context. By analysing all packets, the operator is able to infer information
about attackers. Since the network telescope contains approximately 1/256-th of all
IPv4 addresses, it receives roughly one out of every 256 packets sent by an Internet
worm with an unbiased random number generator. Thus the monitoring of unexpected
traffic yields a view of certain remote network events, the so called backscatter. This
can for example be used to study the threats posed by Denial-of-Service attacks 1358].

160 T. Holz

Another approach in this area is to passively measure live networks by centralising
and analysing firewall logs or IDS alerts ,]. Especially the Internet Storm Cen-
ter (ISC) / DShield.org [@,] is a well-known project in this area. In this project,
the collected data is simple packet filter information from different sources all around
the world and no “high-level” data is included. Reports are published on a daily ba-
sis. They include information about attack patterns and take a closer look at unusual
events. A report combines 8 — 20 million records per day with 200,000 — 400,000
source and 300,000 — 450,000 target IP addresses per day. The results are statistics like
“Most Attacked Port” or for each port the number of observed source addresses. How-
ever, the data contains no detailed information about the source which has collected
the packet since this kind of information is anonymised. Therefore a comparison of
different attacks is not easily possible. Nevertheless, the huge amount of collected data
could enable a way to form metrics. Since the collected information can be compared on
different scales, it would be possible to measure the impact of certain malicious events
or other metrics could be applied.

Coarse-grained interface counters and more fine-grained flow analysis tools such
as NetFlow/cflow offer another readily available source of information. A flow is an
abstraction of individual packets and a summary of packet data between two sites. It
can be defined as IP traffic with the same source IP, destination IP, source port and
destination port, since this quadruple describes the IP traffic between two devices on the
Internet. A flow record typically also contains some additional data, e.g., the number
of bytes sent, the duration of the flow, or the timestamp of the first packet. However,
the actual payload of the connection is not included within a flow. This is mainly due
to logistical reason: if also the payload would be stored, this would quickly result a
unmanageable amounts of data. A router which is capable of monitoring flows will
only output a flow record when it determines that the flow is finished, e.g., either by
explicit connection shutdown or timeout. The flows are stored in a central database and
can be analysed from a high-level point of view. With this aggregation of data, it is
often possible to draw conclusions about unusual events within a network. Moreover,
this concept is often used for visualisation of network traffic. Spikes at certain network
ports or certain anomalies can be detected via flow-based analysis techniques. And
again, the collected data can enable metrics to analyse the current state of a network
in terms of malicious network traffic. However, also this area has up to now no real
formalism or model as foundations of metrics.

13.2 Metrics for Intrusion Detection Systems

An Intrusion Detection System (IDS) generally tries to detect unwanted manipulations
to information systems resources. An IDS is required to detect as many types of mali-
cious network traffic and computer usage as possible. Each of these malicious events
can be described with the help of an attack vector, i.e., a path or means by which an
attacker can gain access or modify an information system resource. So the basic task of
an IDS is to classify an event as normal or malicious. In general, there are two funda-
mentally different approaches to build an IDS:

Security Measurements and Metrics for Networks 161

— Misuse detection systems (or signature-based Intrusion Detection Systems) identify
malicious attacks by comparing actual network traffic or executing flow of an ap-
plication with patterns of malicious attacks. Therefore, this kind of systems needs
to know the signature of an attack in advance. The main drawback is that these
signatures have to be updated regularly to adapt to new attack vectors. In addition,
a zero day attack, i.e., an attack vector for an unknown vulnerability, can not be
detected with such an approach.

— Anomaly-Based Intrusion Detection Systems identify malicious attacks by detect-
ing network traffic or executing flow of an application that deviates from “normal”
network or system activity. In most cases, this “normal” state is learnt during a
training period in which the IDS observes the regular behaviour of the information
system resource, the baseline/threshold. Afterwards, the IDS can detect whether
the current behaviour differs from the learned behaviour.

Orthogonal to this classification is the differentiation between host-based IDS (HIDS)
and network-based IDS (NIDS). A HIDS monitors and analyses the behaviour of a com-
puter system and is typically also installed on this system. The HIDS could for example
monitor system calls, modification of the filesystem, or other changes in the operating
system or application. In contrast to that, a NIDS examines the network traffic within
a computer network. It tries to detect malicious activity, e.g., Denial-of-Service (DoS)
attacks or exploitation attempts, at the network layer. Moreover, both approaches can
be combined to build a Hybrid Intrusion Detection System to enhance the effectiveness.

A survey on intrusion detection systems can be found in the paper by Hervé Debar
and Wespi [214] or Axelsson [29]. A preliminary taxonomy of IDS and attacks is a
result of the MAFTIA project [327].

Binary Classification

In order to compare different IDS solution, we need metrics to evaluate them. Firstly,
these metrics should be able to objectively measure the effectiveness of the solution in
terms of its ability to correctly classify a certain behaviour as normal or malicious, i.e.,
measure the accuracy of the IDS. Secondly, an IDS can also be evaluated on the basis
of its performance, i.e., how many packets per second can be examined or how large the
memory usage is. For more information on this kind of metrics, please see Part IV of this
book. Thirdly, an important metric is the resilience of an IDS. The resilience measures
how the IDS reacts on stress tests or attacks against the IDS itself. In this area, there
are currently no established metrics since this is rather an arms-race between attackers
and defenders and this area is changing quickly. So we will focus in the following on
metrics to measure the accuracy of an IDS solution.

The most simple — and most often used — accuracy metrics for IDS come from the
area of binary classification. Since the IDS has the task to classify an event or behaviour
as malicious or normal, we can use the results obtained in the area of statistics. The first
metrics we introduce are thus False Positive Rate (FP or Type I Error) and False Nega-
tive Rate (FN or Type Il error). The FP is the probability that the IDS outputs an alert
although the behaviour of the system is normal. This means that the IDS incorrectly
outputs an alert. In contrast to that, the FN is the probability that the IDS does not

162 T. Holz

output an alert although the behaviour is malicious. FP and FN can be computed as the
proportion of false positives from the number of negatives, and vice versa:

FP — number of false positives
~ number of negatives

FN — number of false negatives
~ number of positives

Consequently, we can also define True Positive Rate (TP) and True Negative Rate
(TN) as metrics for an IDS. TP is defined as the probability that the IDS outputs an
alert when there is an intrusion and can be determined as TP = 1 — FN. Similarly, TN
is defined as the probability that the IDS outputs no alter when the behaviour is not
malicious. This can be expressed as TN = 1 — FP.

When developing an IDS, there is always a trade-off between false positive rate and
false negative rate: we can make the IDS more sensitive at the risk of introducing more
false positives, or can deploy it more restrictively at the risk of rejecting false negatives.
The risk of false positives must be balanced against the risk of false negatives when
selecting the best IDS configuration.

Similar to the above metrics, we can also use the sensitivity of an IDS as a metric.
The sensitivity is defined as the proportion of normal behaviour.

o number of true positives
Sensitivity = - .
number of true positives 4+ number of false negatives
A sensitivity of 1 means that all malicious events are detected. But this is not very
meaningful since this can be trivially achieved by classifying all behaviour as mali-
cious. Therefore, another metric that we need to determine is the specificity. This is the
proportion of true negatives of all the negative behaviour examined:

L number of true negatives
Specificity =
number of true negatives + number of false positives
Here, a specificity of 1 means that all normal behaviour is classified as such. Again,
specificity alone does not help us much since specificity of 1 can be trivially reached
by classifying all behaviour as normal. To combine these two metrics, we can use the
F-measure. This is the harmonic mean of sensitivity and specificity:

2 x sensitivity X specificit
F-measure = o Y p. . Y
sensitivity + specificity
Moreover, there are additional metrics that are similar to the metrics presented up to
now, but which bear some slightly different information:

— Positive Predictive Value (PPV or Bayesian Detection Rate) is the probability that
there is an intrusion when the IDS outputs an alert.

— Negative Predictive Value (NPV) is the probability that there is no intrusion when
the IDS does not output an alert.

Security Measurements and Metrics for Networks 163

Both PPV and N PV can be calculated similar to specificity and sensitivity:

PPV — number of true positives
~ number of true positives + number of false positives

NPV — number of true negatives
~ number of true negatives + number of false negatives

In contrast to specificity, PPV yields a measurement of actual normal behaviour in
the whole observation set. The important difference between both concepts is that speci-
ficity and sensitivity are independent from the total number of samples in the sense that
they do not change depending on the fraction of malicious traffic in the whole observa-
tion set. In contrast to this, PPV and NPV are sensitive to this fraction. PPV is called
Bayesian detection rate 28] since it can also be expressed by using the Bayes theorem
(accordingly for PNV):

PPV = P(actual intrusion|IDS alert)

To determine these metrics for an IDS system, the common way is to use some stan-
dardised data set. An example of such a set is the 1998 DARPA Intrusion Detection
Evaluation Program]. The whole DARPA data set is a test bed that contains nor-
mal traffic data similar to that of an organisation with hundreds of users and thousands
of hosts. In addition, it contains more than 300 instances of 38 different attack vectors.
There is also the 1999 DARPA Off-Line Intrusion Detection Evaluation during which
a similar test bed with even more data was generated [@]. These two test beds were
used for the most comprehensive evaluation of research in intrusion detection systems.
Nevertheless, the results and the methodology are not without controversy, see for ex-
ample McHugh] for a criticism of that work. The main criticism for these two data
sets is that they contain artifacts due to the way the data was generated.

Receiver Operating Characteristic (ROC) Curves

Another possible approach to define a metric for intrusion detection systems is to use a
Receiver Operating Characteristic (ROC) curve and plot the true positive rate (detection
rate) versus the false positive rate. ROC curves can be used to evaluate the results of
different IDS systems. An example of such a curve is given in Fig. [Tl (taken from Eskin
et al.]). Three different algorithms perform unsupervised anomaly detection on a
training data set taken from the KDD Cup 1999 Data [@]. This data set consisted of a
subset of the 1998 DARPA Intrusion Detection Evaluation Program [@]. The three
curves were obtained by varying the baseline of the underlying algorithms and plotting
the corresponding false positive/true positives rates.

But which of these three IDS systems is now the best one? Since the ROC curves of
the systems cross, there is no easy way to compare them. If the ROC curve for one IDS
is always above (i.e., closer to the top left corner) the ROC curve of another IDS, then
this means that the first IDS performs better than the second one: for every false positive
rate, it has a higher detection rate. But if both curves cross, it is unclear which IDS has
the better overall performance. Regarding the figure, we can tell that in certain areas

164 T. Holz

ROC Curves for KDD Cup 1999 Data Set

S e e
----- KNMN ---+-
Cluster ---=---
goef | | |
i3 i i
5 w i
T = 1
2 Pl
& o4 H i -
i |
: ¥
02 I.' _
#
D 1 I , I
’ . o 08 08 1

False Positive Rate

Fig. 1. Example of ROC curve for three different IDS setups

each of the three algorithms has its advantages, e.g., if a false positive rate of about 0.1
is tolerable, then KNN is worse than the two others.

A possibility to extend a metric based on ROC curves is to measure the Area Under
(ROC) Curve (AUC) and use this as a metric. An area of 1 represents a perfect detection
rate of malicious attacks. And an area of 0.5 represents a worthless IDS since the false
positive rate always corresponds to a true positive rate. Again, this metric has some lim-
itations since it measures the overall performance of an IDS at all baselines. In practice,
however, the IDS would be deployed with the best baseline possible.

Cost-Based Approaches

In order to integrate the notions of false positive rate and true positive rate, it is possible
to assign a cost to each of them. This cost-based analysis yields a metric that considers
the trade off between false negative rate and false positive rate in terms of a (possibly
estimated) cost measure. This cost measure can be individually adjusted to differentiate
between the damage caused by a successful intrusion or the costs corresponding to a
false alarm. For example, a company with lots of sensitive information will presumably
prefer a very low false negative rate even if the false positives rate could be high. Ulvila
] and Gaffney] use such a cost-based analysis to combine ROC curves and
cost-based estimations to determine the expected cost of several IDS baselines. The
expected costs can be used as a metric to identify the best baseline and also to compare
different IDS implementations. The difficulties and caveats to assign a cost to false
negative rate and false positive rate will be further examined in Sect. 15.

Security Measurements and Metrics for Networks 165

Information-Theoretical Approaches

It is also possible to transfer concepts from another research area to build a metric for
intrusion detection systems. The concept of information theory can be used to motivate
an information theoretic metric] for IDS. This metric is based on the following
observation: at an abstract level, the purpose of an IDS is a binary classification of the
input data X (i.e., events that the IDS observes) as normal or malicious. From an infor-
mation theoretic point of view, this means that we should have less uncertainty about
the input given the IDS output Y. This metric — called Intrusion Detection Capability
(C1p) — is the ratio of the mutual information between IDS input and output I(X,Y"),
and the entropy H (X)) of the input:

I(X,Y)
H(X)

This metric provides a normalised measurement of the amount of certainty gained
by observing IDS outputs. Besides the information given in this paragraph, more infor-
mation can be found in the technical report by Gu et al. 201]].

Another metric for intrusion detection systems is proposed by Helman and Liepins
213]. They model network activity as generated by two stationary stochastic processes,
one being malicious and the other legitimate. They formally demonstrate that the ac-
curacy of an IDS is bounded by a function of the difference of the densities of the two
processes over the space of transactions. The according metric is called prioritisation.

Crp =

14 Industrial Approaches and Standards
for Security Assessment

Steffen Weiss

University of Erlangen-Nuremberg, Germany

This chapter surveys the work on security standards and best-practices approaches for
the security of entire organizations.

14.1 Introduction

Attacks against organizations are becoming more frequent and more severe as recent
studies show [22,]. As a consequence the risk for an organization to be target of
attacks and to suffer substantial losses cannot be neglected. In order to avoid such loss,
organizations try to secure their systems by implementing security measures. These
measures can be policies, procedures, guidelines, practices or organizational structures,
which can be of administrative, technical, management, or legal nature [ﬂ]. In the lit-
erature, these means are often called controls. Organizations need to select appropriate
security controls and decide how much should be invested for security and where to
invest. Installing these controls can on the one hand lead to an improved security, but
also to high installation and maintenance costs. On the other hand, installation of too
few or the wrong controls could lead to large and expensive security incidents.
In the context of security metrics, two questions arise:

1. How effective are the security controls of an organization? This question aims at
evaluating the security status of an entire organization.

2. How efficient is the investment in security controls? This question aims at evaluat-
ing the economic return of security measures.

It should be clear that both questions are closely interrelated. In this chapter, we aim
at discussing the first question. The second question is investigated in the chapter on
economic measures of security (Chapter 15).

The security status of an organization is a complex thing which is influenced by
many things like attacks, controls, assets etc. Ideally, taking all these aspects together, it
should be possible to “calculate” a statement about security. But organizations are com-
plex structures and so in practice results of such calculations are often rather qualitative
and imprecise. In this chapter we review general methods to perform such calculations.
These include well-known standards like ISO 17799 [ﬁ] as well as risk management
approaches. We first present a basic categorization and taxonomy of these approaches
and then present existing approaches following the taxonomy.

I. Eusgeld, F.C. Freiling, and R. Reussner (Eds.): Dependability Metrics, LNCS 4909, pp. 166 2008.
(© Springer-Verlag Berlin Heidelberg 2008

Industrial Approaches and Standards for Security Assessment 167

14.2 Basic Categorization

In theory, an organization can be structured hierarchically from low-level structures like
offices, employees, hardware to high-level ones like departments, company branches,
or divisions. So ideally the security status of an organization can be computed by a
hierarchical process: first calculate basic indicators, i.e., security values of low-level
structures and then combine them to more complex security values following the hier-
archical structure of the organization. (In practice there are some effects like missing
independence making this process quite difficult.) This calculation can be done with
different levels of rigor, i.e., precisely and quantitative on the one hand and more qual-
itative on the other. This gives rise to two basic dimensions in which the domain of
organizational security metrics can be structured.

The first dimension refers to whether one is interested in basic indicators or in the
calculation process from basic indicators to global indicators:

— Measurement approaches specify how to measure the basic security indicators of
an organization.

— Combining approaches specify how to measure a whole organization’s security
given values for basic indicators.

The second dimension refers to the level or rigor in which measurement is performed:

— Algorithmic approaches rely on a formal representation of the calculation, i.e., an
algorithm, a program or a mathematical formula.

— Guidelines give a rather high-level and abstract description of how to carry out the
calculation.

These two dimensions structure the domain of security metrics for organizations into
four categories. Table [[l shows these categories and points to the sections of this chap-
ter in which these categories are treated in detail. Two categories turn out to be more
relevant than the others: On the one hand algorithmic approaches to measure basic in-
dicators, on the other hand guidelines to combine basic indicators to an overall security
evaluation. This corresponds to the observation that with growing complexity security
measurements become more qualitative. We treat the main two classes of metrics in
own sections (Sections[I4.4land Section[T4.3)) while we discuss the other two in a basic
overview only (Section [I43).

Table 1. Taxonomy of security metrics for organizations

Measurement approaches Combining approaches

Algorithmic approaches Section [[4.4] Section[T4.3]
Guidelines Section [14.3] Section[14.5]

14.3 Overview

We now give a brief overview over all four classes of security metrics for organizations
as introduced in Section [14.21 The two main classes are treated in more detail in the
following sections.

168 S. Weiss

Algorithmic Approaches for Measuring Basic Indicators

Algorithmic approaches measuring an organization’s security properties rely on tools
like scanners for weak passwords. Also statistical output of intrusion detection systems,
and virus scanners can be mentioned. There are already quite a lot of approaches like
this and the number seems to be growing steadily. We give an overview over this area
in Section[T4.4l Additional information on this area can be found for example in Chap-
ters 13 and 15.

Algorithmic Approaches for Combining Measurement

Algorithmic approaches for combination of indicators and measurement of whole orga-
nization’s security are very often derived from the reliability domain. One of the most
commonly used approaches are (fault-)trees. Even if these security metrics are mathe-
matically correct and theoretically well founded there is usually lack of applicability. As
a result these metrics are not very useful in the real world. Useful hints on this area are
also given in the annotated bibliography on the combination of reliability and security
(Chapter 25).

Guidelines for Measuring Basic Indicators

Guidelines for measurement of an organization’s security indicators are approaches
used to get information about security of specific elements which can not or not solely
be described by an algorithm. Penetration testing is probably the best known approach
in this area. An expert simulates an attack of a malicious cracker. It involves an active
analysis of the system for any weaknesses, technical flaws or vulnerabilities. Sometimes
people make use of tools to simplify work. Nevertheless, the whole process cannot be
completely described by an algorithm. This part is not established as well as for exam-
ple the algorithmic measurement approaches, yet it seems to be growing.

Guidelines for Combining Measurement

Guidelines for assessment of a whole organizations’s security are based on values of
single security indicators. This category is the most relevant one in practice. This area
is the domain of best practices and standards. There are many standards telling how
one can principally perform this “measurement”. One very common approaches in this
area is the Baseline Protection Manual [B]. Another approach is BS 7799-2 [@] the
“measurement standard” for ISO 17799 [ﬂ]. (BS 7799-2 as well as ISO 17799 will be
included in the ISO 27000 series in future.) Usually, these approaches rely on intensive
use of consultants. We discuss this class of metrics in more detail in Section [[4.3]

14.4 Algorithmic Measurement of Basic Indicators

There is a large body of work aimed at measurement of basic indicators. Some of this
work is surveyed in detail in other chapters of this book. For example, the evaluating
the strength of cryptosystems is treated in Chapter 12, the quality of firewalls, intrusion

Industrial Approaches and Standards for Security Assessment 169

detection systems and virus scanners is discussed in Chapter 13 while measurement of
the security knowledge of personnel is presented in Chapter 16. Here we briefly mention
two additional approaches to get indicators about an organization’s security:

— Vulnerability analysis.
— Security testing (also known as penetration testing).

Vulnerability Analysis

There is a large body of tools that can be used to gain insight into the level of security
of a system in an automated fashion. These tools have often evolved from software
which was originally designed to break into networks. These tools aim at finding known
vulnerabilities in a network. Examples of such vulnerabilities are:

— Known software vulnerabilities and missing security updates.

— Weak passwords.

— Bad security configuration settings (like open guest accounts or disk volumes with
insecure file systems).

Thus, vulnerability analyzers give a quick overview of the current security status of
networked systems.

An example of such a vulnerability analysis tool is the Microsoft Baseline secu-
rity analyzer (MBSA) [10] which is available for free download. The security analyzer
works on most currently available versions of the Windows operating system (includ-
ing Windows XP, Windows 2000, Windows 2003 Server) and covers the three directions
mentioned above. Figure[Il gives an impression of how the MBSA works.

Another well-known tool that does vulnerability analysis is Nessus]. Nessus
originally evolved as an open source project but has now forked into a commercial
version and a non-commercial open source version called OpenVAS [468]. Another
well-known commercial product is the Internet Security Scanner].

Security Testing

For security testing or penetration testing (terms are used as synomyms) evaluators at-
tempt to circumvent the security features of a system. This is one of the oldest methods
used for assessing computer system’s security [136]. The primary aim is attaining con-
trol over the target system and evaluating the difficulty of doing this.

The usual way of proceeding is described for example by Shinberg]: Penetration
testing starts with determining the IP address of a host on the network of interest and
investigation who owns the address space allocated. Knowing enough details about the
network to attack, the actual test or penetration can start: Usually, scans are used to
determine the services which are running on the hosts. Afterwards tools are used to scan
for vulnerabilities in the network (e.g. routers and firewalls) or the telecommunication
equipment (e.g. PBX, fax, and modem) Additionally tests of physical security can be
launched or social engineering can be applied to disclose important network details like
passwords or gain physical access to important hardware. Penetration testing can also
be applied to single security controls like firewall systems.

170 S. Weiss

€ Microsoft Baseline Security Analyzer 2

%‘! Baseline Security Analyzer

Microsoft Baseline Security View security report

Analyzer
Sort Oider: | Soore [worst frst]

Computer name: WORKGROUPSFAUIESY A

[0 welcome

[Pick. a computer to sean

IP address: 192168.120.254
[Pick multiple computers to scan Security report name: WORKGROUP - FAUIESW (25042006 18-39)
[Pick a secuity report o view Scan date: 25,04,2006 18:39 =
[Wiew a secuiity repart Scanned with MBSA version: 2.0.5029.2

Catalog synchronization date:

Security update catalog: Microsoft Update =
See Also Security assessment: Patential Risk [One of more norvcritical checks failed)

[Miciosalt Baseline Secuity
Analyzer Help

[Security Update Scan Results

[About Miorosoit Bassline Sesuity
Analyzer

[Miciosoft Security wsh sits

(Office Security No security updates are missing,
Updates ‘What was scanned Fesul details

Actions
& Frint
Copy

orporation, All rights r

Windows Scan Results

Administrative Vulnerabilities

| Score lssue Resuh v

@) Previous security report et secuity report ()

Fig. 1. Screen shot of the Microsoft Bazeline Security Analyzer

Today, security testing is a low-key high-volume business. Superficial security test-
ing can be done in an automated fashion using vulnerability scanners. In-depth security
analysis requires a team of highly-skilled experts that may test a system against unusual
and even unknown breaches. Result of a security testing procedure is a detailed report
on the weaknesses of the system.

14.5 Guidelines for Combining Approaches

In this section we survey the area of informal metrics to measure the security of whole
organization. The basic principle is combination of diverse data and data types like val-
ues about attacker’s strength and information about rates of occurrence to meaningful
values for the whole organization.

Questionnaires

Questionnaires available over internet are usually a marketing instrument of security
product vendors. They aim to make people more aware about IT security. Visitors are
asked some questions, e.g. whether they have installed a firewall. Afterwards some
(usually very simple) mechanisms are used to calculate a “total security scoring”. The
result — for example on a scale of 0 to 10 — is afterwards presented to the user. Even if
the assessment mechanism usually is rather guesswork, these questionnaires provide at
least a first impression about an organization’s security. Nevertheless one cannot speak
about a real metric.

Industrial Approaches and Standards for Security Assessment 171

There are quite a lot of questionnaires or “security (self) assessment tools” - which
is another well known term used in literature. A good overview can be found in].

Selection of Security Indicators

The primary standard in this field is NIST SP 800-55]. This approach provides
guidance on how an organization, through the use of metrics identifies the adequacy of
in-place security controls, policies, and procedures. A suggested metric is for example
whether there is a system security plan and whether it is up to date. The metric presented
in NIST SP 800-55

Describes the roles and responsibilities of the agency staff that have a direct interest

in the success of the IT security program.

— Provides guidance on the background and definition of security metrics, the benefits
of the implementation etc.

— Presents an approach and a process for the development of useful IT security
metrics.

— Discusses those factors that can affect the technical implementation of a security

metrics program.

Special effort is laid upon the integration into the management system of the organi-
zation. All single metrics base on IT security performance goals and objectives, which
state the desired results and should be validated with stakeholders. The approach is a
quite abstract, management-oriented approach. It does not really say something about
how to measure security. The basic statement made by this standard is that if the guide-
lines are followed, then the organization is more secure than without following the
guidelines.

Best Practice Approaches

Best practice approaches contain suggestions for security controls to improve informa-
tion security. Usually suggestions are subdivided according to the domains where these
suggestions are useful. ISO 17799 [ﬂ], the most common approach in this direction,
contains for example:

— Asset management.

— Human resources security.

— Physical and environmental security.
Access control.

Beside a control objective, stating the intended achievements, each main security
category contains one or more controls that can be applied to achieve the control
objective.

Each control description provides detailed information to support the implementa-
tion of the control. For example, the control “Addressing security in third party agree-
ments” contains topics, important to be included in agreements with suppliers like
responsibilities regarding hardware and software installation and maintenance. Nev-
ertheless details about these topics are not defined.

172 S. Weiss

Even if the list of controls can be seen as some type of binary metric (if fulfilled se-
curity is good - if not security is not so good) it is not intended to be a real metric. To be
exact ISO 17799 does not contain any measurement approach itself. Instead BS 7799-2
2] is suggested to be used (for more details about BS 7799-2 see chapter “management
system assessment”).

Beside ISO 17799, there are other best practice approaches: BS 7799-1 () (which is
nearly identical to ISO 17799) and the NIST SP 800-53]. But even NIST SP 800-
53 does not significantly differ from ISO 17799 at the concept level, the only difference
is a rudimentary selection schema. For additional introduction to BS 7799 see].

All together, best practice approaches are useful as a starting point for security mea-
sures in organizations. Unfortunately, they mainly focus on providing sets of controls
and thus one can not actually speak about a metric apart from claiming that if these
controls are in place, then the security of the organization is higher than without the
controls.

Baseline Protection

The Baseline Protection Manual (Grundschutzhandbuch) of the German Federal Of-
fice of Information Security (BSI) [@] contains standard security safeguards, which are
applicable to virtually every IT system providing basic security.

An IT baseline protection analysis is carried out by accomplishing the following
steps:

The structure of the existing IT assets is analyzed.

Adequate protection requirements for information and IT assets used are identified.
Assets are modeled with the help of existing modules of the IT baseline protection
manual.

A test plan is established using a target versus actual comparison.

A certificate aligning with this manual allows saying whether an organization has imple-
mented the needed IT baseline protection standard security safeguards. The certificate
can be awarded if an audit [3] is successfully performed. The audit mainly relies upon
the documented results of the four steps mentioned above. Criteria are given to check
the adequacy of the documentation, for example:

— Comprehensiveness of the analysis of existing IT.
— Plausibility of defined protection requirements.
— Conceivability of the model of the IT system.

The auditor’s judgment about this check is the basis for the decision whether the re-
garded object of investigation fulfills the discussed requirements and, thus, awarding an
IT baseline protection certificate is acceptable.

Additional information about management aspects and technical application of this
approach can also be found in 1376].

Assessment of Security Management Systems

Another type of metric is measurement of security management system’s fitness. This
approach is integrated into BS 7799-2 [2] and will be integrated into an ISO-standard
in future.

Industrial Approaches and Standards for Security Assessment 173

This standard specifies the requirements for the implementation of security controls,
customized to the needs of individual organizations or parts thereof. Core of this stan-
dard is an information security management system (ISMS), a mainly administrative
framework of processes and procedures used to ensure that an organization can fulfill
all tasks required to achieve information security.

A management system is the framework of processes and procedures used to ensure
that an organization can fulfill all tasks required to achieve its objectives.

This system is designed to ensure adequate and proportionate security controls that
adequately protect information assets and give confidence to customers and other inter-
ested parties.

The main aspects of BS 7799-2 and the comparable ISO standard are:

Establish the ISMS.

Implement and operate the ISMS.
Monitor and review the ISMS.
Maintain and improve the ISMS.

Additionally, management responsibility and documentation requirements are
elucidated.

Nevertheless it is not a metric in the classical form. It is some kind of indirect met-
ric saying “if the ISMS is established according to the given rules then an adequate
selection of controls can be assumed”.

Information Security Risk Management

The main part of (classical) information security risk assessment or risk management
approaches is the assessment of the security in single scenarios. Even if there is some
difference between the approaches, the general principle is always the same. In the
following, we will explain the primary working principle on the example of NIST SP
800-30 [460]:

For the calculation of severity of single scenarios, threat likelihood and threat im-
pact are taken as input. Both are assessed on a scale with 3 units: 1.0 for high, 0.5
for medium, and 0.1 for low likelihood, 100 for high, 50 for medium, and 10 for low
impact. The product of these two factors along with the predefined thresholds for the
product determines the resulting risk level.

Besides NIST SP 800-30 there is also the Mehari] approach. In addition to
the guideline for metric establishment in an organization, it defines which values to
estimate and how to combine. This assessment incorporates more assessment steps as
for example the NIST SP 800-30 standard and is more detailed. Nevertheless it follows
the same principle.

In conclusion, risk assessment approaches provide a good overview about the threats
of an organization and, even if the approach is not very detailed, it is a good starting
point.

Between Classical and Extended Information Security Risk Assessment

An approach lying between classical information security risk assessment and an
“extended” information security risk assessment is proposed in the PhD thesis of

174 S. Weiss

Soo Hoo]. The actual metric is based on the annual loss expectancy (ALE) (see
Chapter 15). Soo Hoo sees risk modeling as a decision-driven activity.

The advantages of this approach are incorporation of probability theory and capture
tools to deal with uncertainty. Most important, decision analysis utilizes influence di-
agrams as a common graphical language for communicating the collective knowledge
of an organization. This language is written down in diagrams. These diagrams are
composed of nodes, representing variables, and arrows, representing influence between
variables.

As argued by Schechter [426], there are mayor limitations within this model: It over-
states the reduction of risk resulting from the use of safeguards that act as substitutes for
each other. Additionally the model fails to capture effects of complimentary safeguards
and does not provide a procedure for producing forecasts.

Extended Information Security Risk Assessment

Recent work [@, @] presents an approach similar to classical information security
risk assessment but extending it. The main idea is to perform a more detailed assessment
of security. It is also based on scenarios and allows a more detailed and more objective
assessment of security.

Basically, three indicators are calculated within this metric: First, there is the basic
indicator (also called “expectation”). It is calculated by

S = 100% — [percentage of lost assets]

This formula signifies that security is higher if less assets are lost. As the term “percent-
age of lost assets” suggests, the basic indicator is based on incidents.

An example shall demonstrate that this aligns with the intuitive understanding of
security: There are two organizations, both possessing 100 computers. In the first orga-
nization, 1 of these computers is stolen over a year, in the other 10 computers are stolen
over a year. Assuming that all thefts are detected and reported, the first organization
would probably be regarded to be more secure.

This single value gives a first impression on information security, but it does not
tell something about the distribution of the damage over the years. In other words, it
does not say whether security varies between “very good” and “very bad” or whether
there are only minor differences. Additionally, it does not tell something about very big
damages in one incident. Therefore, two additional indicators are necessary: on the one
hand, the distribution of the security over the time and, on the other hand, an indicator
telling something about the occurrence of very big damages. These two distributions
are the “likely security” and the “minimum security”:

— Likely security is the probability that at least a given security is reached (being
equal to the probability that a given percentage of loss is not exceeded). This value
is good for getting an impression about the expected distribution of the information
security over the time.

— Minimum security is the probability, that no scenario occurs, which (on its own) leads
to a security less than a given threshold. This value is equal to the probability that no
single scenario occurs which leads to a loss bigger than a given percentage of assets.
This indicator helps to recognize probability of occurrence of very big incidents.

Industrial Approaches and Standards for Security Assessment 175

It should be mentioned that these three indicators (expectation .S, likely security, min-
imum security) are calculated for each of the three attributes of security (availability,
confidentiality, and integrity) [@, , ,] separately.

The calculation of this metric is carried out in the following steps:

— All relevant scenarios are identified. For that, all threats, vulnerabilities, and pos-
sible damages of an organization are regarded. The resulting scenarios which are
possibly occurring (like viruses, fire, theft etc.) are listed. Making identification
easier, a generic list of scenarios is provided. It can be taken as a starting point for
modeling scenarios of an organization.

— Assessment of scenarios. On the one hand the rate of occurrence of the scenario is
assessed. On the other hand the damage if the scenario occurs is assessed. Avail-
able internal and external statistics should be used to make these assessments more
objective. Nevertheless scenarios make assessment already more reliable because
they are covering only a small scope of the whole organization.

— Mathematical modeling techniques are used to combine these results. For this, Pois-
son processes are used to calculate the three indicators (per dimension) presented
above. In opposite to the first and the second step, this proceeding is described in
very detail. There is no room for interpretation in this step. Only results of scenario
assessment are taken as input. This makes assessment quite objective.

Nevertheless, quality of the approach depends on quality of available data. As argued
by Soo Hoo 456], this quality is not satisfactory. Even if some years have passed by,
no significant changes in the data situation have been observed.

14.6 Summary of Presented Approaches

In this chapter, we presented the following approaches:

— Questionnaires (or security (self) assessment tools) giving a rough feeling about
security but lacking a founded basis.

— An approach directed to selection of security indicators producing very subjective
results (NIST SP 800-55).

— Best practice approaches which are no actual metric approaches themselves.

— The German Baseline protection approach incorporating a well founded but very
laborious and quite subjective metric.

— Assessment of management systems, which does not assess security directly but by
assessing the procedures established to implement security measures.

— Information security risk assessment as an abstract approach for combination is
presented.

The common problem about these approaches is that they are rather informal and very
subjective. This problem is solved to some extent by the extended information security
risk assessment approach presented at the end.

15 Economic Security Metrics

Rainer Bshme! and Thomas Nowey?

! Technische Universitit Dresden
2 University of Regensburg

This chapter surveys economic approaches for security metrics, among which we could
identify two main areas of research. One has its roots in investment and decision theory
and is mainly pursued in the field of information technology-oriented business adminis-
tration. It has yielded a number of quantitative metrics that can be applied as guidelines
in investment decisions as well as for the evaluation of existing security measures. The
second area of research has ancestors in micro-economics. It deals with market concepts
to gather security-relevant information and extract quantitative indicators on informa-
tion security properties.

15.1 Metrics for Security Investments

The previous chapter has demonstrated that it is essential to measure organisations’ se-
curity at different levels of detail. This also applies to the investment perspective. In
the recent years, organisations see an increasing demand for determining the cost and
benefit of IT security investments. Possible reasons include compliance with regula-
tory requirements, emerging information security threats, or increased dependence of
business processes on information technology. Apart from definitions for metrics, this
section will show the motivations behind metrics as well as challenges in quantifying
the value of IT security investments.

Basics

When assessing investments one can basically take two different perspectives. First, the
ex ante perspective tries to assess the costs and benefits of possible future investments
and helps to decide whether an investment project is profitable or not. Second there is
the ex post perspective for the retrospective judgement of past investments. The first
perspective can help to decide whether to invest in a certain security measure or not,
or to choose the best alternative out of different possible security measures (‘“What
measures should we implement?”). The second perspective should provide a target-
performance comparison and answer the question if the firm’s resources were spent
effectively (“Did we do the right things?”).

The overall goal of the investment perspective on IT security is to measure the in-
fluence of investments in IT security on a firm’s success and to determine the cost and
benefits of different security solutions. Thus metrics for IT security investments should
support both of the perspectives explained above. And they should also fulfill some ad-
ditional requirements, such as allowing for comparisons between firms. It is reasonable
to assume that the law of diminishing marginal returns holds true for IT security in-
vestments as well (see]). Thus from a cost-benefit-perspective there can be a “too

1. Eusgeld, F.C. Freiling, and R. Reussner (Eds.): Dependability Metrics, LNCS 4909, pp. 176 2008.
(© Springer-Verlag Berlin Heidelberg 2008

Economic Security Metrics 177

much” of IT security. So as Soo Hoo] put it the question to answer could also be
“How much is enough?”.

One could assume that it is easy to adapt the metrics of classical investment the-
ory to IT security. However there are some major differences between investments in
IT security and ordinary investments. The first main difference between usual invest-
ment considerations and investments in IT security is, that it is hard to determine the
economic utility of those investments. This lies in the nature of IT security measures.
Investing in IT security processes or products usually will not provide direct returns in
the sense of a measurable positive cash flow. Their main utility rather lies in reducing
potential risks. Second, determing the cost of IT security can also be quite hard. Besides
direct costs (e.g. instal